
1
1

COE 561
Digital System Design &

Synthesis
Introduction to VHDL

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

2

Outline …

Hardware description languages
VHDL terms
Design Entity
Design Architecture
VHDL model of full adder circuit
VHDL model of 1’s count circuit
Other VHDL model examples
Structural modeling of 4-bit comparator
Design parameterization using Generic

2
2

3

… Outline

Test Bench example
VHDL objects
Variables vs. Signals
Signal assignment & Signal attributes
Subprograms, Packages, and Libraries
Data types in VHDL
Data flow modeling in VHDL
Behavioral modeling in VHDL

4

Hardware Description Languages

HDLs are used to describe the hardware for the
purpose of modeling, simulation, testing, design, and
documentation.
• Modeling: behavior, flow of data, structure
• Simulation: verification and test
• Design: synthesis

Two widely-used HDLs today
• VHDL: VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language
• Verilog (from Cadence, now IEEE standard)

3
3

5

Styles in VHDL

Behavioral
• High level, algorithmic, sequential execution
• Hard to synthesize well
• Easy to write and understand (like high-level language code)

Dataflow
• Medium level, register-to-register transfers, concurrent

execution
• Easy to synthesize well
• Harder to write and understand (like assembly code)

Structural
• Low level, netlist, component instantiations and wiring
• Trivial to synthesize
• Hardest to write and understand (very detailed and low level)

6

VHDL Terms …
Entity:
• All designs are expressed in terms of entities
• Basic building block in a design

Ports:
• Provide the mechanism for a device to communication with its

environment
• Define the names, types, directions, and possible default values for

the signals in a component's interface
Architecture:
• All entities have an architectural description
• Describes the behavior of the entity
• A single entity can have multiple architectures (behavioral,

structural, …etc)
Configuration:
• A configuration statement is used to bind a component instance to

an entity-architecture pair.
• Describes which behavior to use for each entity

4
4

7

… VHDL Terms …

Generic:
• A parameter that passes information to an entity
• Example: for a gate-level model with rise and fall delay,

values for the rise and fall delays passed as generics

Process:
• Basic unit of execution in VHDL
• All operations in a VHDL description are broken into single or

multiple processes
• Statements inside a process are processed sequentially

Package:
• A collection of common declarations, constants, and/or

subprograms to entities and architectures.

8

VHDL Terms …

Attribute:
• Data attached to VHDL objects or predefined data about

VHDL objects
• Examples:

• maximum operation temperature of a device
• Current drive capability of a buffer

VHDL is NOT Case-Sensitive
• Begin = begin = beGiN

Semicolon “ ; ” terminates declarations or statements.
After a double minus sign (--) the rest of the line is
treated as a comment

5
5

9

VHDL Models …

10

… VHDL Models

PACKAGE
DECLARATION

PACKAGE
BODY

(often used
functions,
constants,
components, ….)

ENTITY
(interface description)

ARCHITECTURE
(functionality)

CONFIGURATION
(connection entity ↔ architecture)

6
6

11

Design Entity …

In VHDL, the name of the system is the same as the
name of its entity.
Entity comprises two parts:
• parameters of the system as seen from outside such as bus-

width of a processor or max clock frequency
• connections which are transferring information to and from

the system (system’s inputs and outputs)

All parameters are declared as generics and are
passed on to the body of the system
Connections, which carry data to and from the system,
are called ports. They form the second part of the
entity.

12

Illustration of an Entity

Din1 Din2 Din3 Din4 Din5 Din6 Din7 Din8

CLK

Dout1 Dout2 Dout3 Dout4 Dout5 Dout6 Dout7 Dout8

8-bit register
fmax = 50MHz

entity Eight_bit_register is

parameters

connections

end [entity] [Eight_bit_register]

CLK one-bit input

7
7

13

Entity Examples …

Entity FULLADDER is
-- Interface description of FULLADDER

port (A, B, C: in bit;
SUM, CARRY: out bit);

end FULLADDER;

FULL ADDER
A
B
C

SUM

CARRY

14

… Entity Examples

Entity Register is
-- parameter: width of the register
generic (width: integer);
--input and output signals
port (CLK, Reset: in bit;

D: in bit_vector(1 to width);
Q: out bit_vector(1 to width));

end Register;

D Q

CLK

Reset

width width
D Q

8
8

15

… Design Entity

Architectural Specs

•Behavioral (Algorithmic ,
DataFlow)

• Structural

A

B
ZName

Basic Modeling

Unit

Interface Specs

• Name

• Ports (In, Out, InOut)

• Attributes

DESIGN ENTITY

16

Architecture Examples: Behavioral
Description

Entity FULLADDER is
port (A, B, C: in bit;

SUM, CARRY: out bit);
end FULLADDER;

Architecture CONCURRENT of FULLADDER is
begin
SUM <= A xor B xor C after 5 ns;
CARRY <= (A and B) or (B and C) or (A and C) after 3

ns;
end CONCURRENT;

9
9

17

Architecture Examples: Structural
Description …

architecture STRUCTURAL of FULLADDER is
signal S1, C1, C2 : bit;
component HA
port (I1, I2 : in bit; S, C : out bit);

end component;
component OR
port (I1, I2 : in bit; X : out bit);

end component;
begin

INST_HA1 : HA port map (I1 => B, I2 => C, S => S1, C => C1);
INST_HA2 : HA port map (I1 => A, I2 => S1, S => SUM, C => C2);
INST_OR : OR port map (I1 => C2, I2 => C1, X => CARRY);

end STRUCTURAL;

I1 S
HA

I2 C

I1 S
HA

I2 C I1
OR

I2 x

A

C

B

CARRY

SUM

S1

C1

C2

18

… Architecture Examples: Structural
Description
Entity HA is
PORT (I1, I2 : in bit; S, C : out bit);
end HA ;
Architecture behavior of HA is
begin

S <= I1 xor I2;
C <= I1 and I2;

end behavior;

Entity OR is
PORT (I1, I2 : in bit; X : out bit);

end OR ;
Architecture behavior of OR is
begin

X <= I1 or I2;
end behavior;

10
10

19

One Entity Many Descriptions

A system (an entity) can be specified with different
architectures

Entity

Architecture
A

Architecture
B

Architecture
C

Architecture
D

20

Example: Ones Count Circuit

Value of C1 C0 = No. of ones in the inputs A2, A1, and
A0

• C1 is the Majority Function (=1 iff two or more inputs
=1)

• C0 is a 3-Bit Odd-Parity Function (OPAR3))
• C1 = A1 A0 + A2 A0 + A2 A1
• C0 = A2 A1’ A0’ + A2’ A1 A0’ + A2’ A1’ A0 + A2 A1 A0

A0

A2

C0
A1

C1

11
11

21

1
2

3

Ones Count Circuit Interface
Specification

entity ONES_CNT is
port (A : in BIT_VECTOR(2 downto 0);

C : out BIT_VECTOR(1 downto 0));
-- Function Documentation of ONES_CNT
-- (Truth Table Form)
-- ____________________
--	A2 A1 A0	C1 C0
-- | 0 0 0 | 0 0 |
-- | 0 0 1 | 0 1 |
-- | 0 1 0 | 0 1 |
-- | 0 1 1 | 1 0 |
-- | 1 0 0 | 0 1 |
-- | 1 0 1 | 1 0 |
-- | 1 1 0 | 1 0 |
-- | 1 1 1 | 1 1 |
-- |__________ |________|
end ONES_CNT;

D
O
C
U
M
E
N
T
A
T
I
O
N

22

Ones Count Circuit Architectural
Body: Behavioral (Truth Table)
Architecture Truth_Table of ONES_CNT is

begin
Process(A) -- Sensitivity List Contains only Vector A
begin

CASE A is
WHEN "000" => C <= "00";
WHEN "001" => C <= "01";
WHEN "010" => C <= "01";
WHEN "011" => C <= "10";
WHEN "100" => C <= "01";
WHEN "101" => C <= "10";
WHEN "110" => C <= "10";
WHEN "111" => C <= "11";

end CASE;
end process;

end Truth_Table;

12
12

23

Ones Count Circuit Architectural
Body: Behavioral (Algorithmic)
Architecture Algorithmic of ONES_CNT is
begin

Process(A) -- Sensitivity List Contains only Vector A
Variable num: INTEGER range 0 to 3;

begin
num :=0;
For i in 0 to 2 Loop

IF A(i) = '1' then
num := num+1;

end if;
end Loop;

--
-- Transfer "num" Variable Value to a SIGNAL
--

CASE num is
WHEN 0 => C <= "00";
WHEN 1 => C <= "01";
WHEN 2 => C <= "10";
WHEN 3 => C <= "11";

end CASE;
end process;

end Algorithmic;

24

Ones Count Circuit Architectural
Body: Data Flow
• C1 = A1 A0 + A2 A0 + A2 A1
• C0 = A2 A1’ A0’ + A2’ A1 A0’ + A2’ A1’ A0 + A2 A1 A0

Architecture Dataflow of ONES_CNT is
begin

C(1) <=(A(1) and A(0)) or (A(2) and A(0))
or (A(2) and A(1));

C(0) <= (A(2) and not A(1) and not A(0))
or (not A(2) and A(1) and not A(0))
or (not A(2) and not A(1) and A(0))
or (A(2) and A(1) and A(0));

end Dataflow;

13
13

25

Ones Count Circuit Architectural
Body: Structural …

C1 = A1 A0 + A2 A0 + A2 A1 = MAJ3(A)
C0 = A2 A1’ A0’ + A2’ A1 A0’ + A2’ A1’ A0 + A2 A1 A0

= OPAR3(A)

ONES_CNT

C1

Majority Fun

C0

Odd-Parity Fun

AND2 NAND3OR3 NAND4

Structural Design Hierarchy

INV

26

Ones Count Circuit Architectural
Body: Structural …

Entity MAJ3 is
PORT(X: in BIT_Vector(2 downto 0);

Z: out BIT);
end MAJ3;

Entity OPAR3 is
PORT(X: in BIT_Vector(2 downto 0);

Z: out BIT);
end OPAR3;

14
14

27

VHDL Structural Description of
Majority Function …

G1

G3

G2

x(0)
x(1)

x(0)
x(2)

x(1)
x(2)

G4

A2

A1

A3

Z

Maj3
Majority Function

Architecture Structural of MAJ3 is
Component AND2

PORT(I1, I2: in BIT; O: out BIT);

end Component ;

Component OR3

PORT(I1, I2, I3: in BIT; O: out BIT);

end Component ;

Declare Components
To be Instantiated

28

VHDL Structural Description of
Majority Function

SIGNAL A1, A2, A3: BIT; Declare Maj3 Local Signals
begin
-- Instantiate Gates

g1: AND2 PORT MAP (X(0), X(1), A1);
g2: AND2 PORT MAP (X(0), X(2), A2);
g3: AND2 PORT MAP (X(1), X(2), A3);
g4: OR3 PORT MAP (A1, A2, A3, Z);

end Structural;

Wiring of
Maj3
Components

15
15

29

VHDL Structural Description of Odd
Parity Function …

g3

g4
Z1

Z2

Z3

Z4

Z

g1 g2
x(0) A0B x(1) A1B

x(2) A2B
X(2)

A1B

X(0)
A1B g5

g6

g7

A0B

A2B

X(0)
X(1)

X(2)

X(1)
A2B

A0B

C0 Odd-Parity

(OPAR3)

g8

Architecture Structural of OPAR3 is

Component INV

PORT(Ipt: in BIT; Opt: out BIT);

end Component ;

Component NAND3

PORT(I1, I2, I3: in BIT;

O: out BIT);

end Component ;

Component NAND4

PORT(I1, I2, I3, I4: in BIT;
O: out BIT);

end Component ;

30

VHDL Structural Description of Odd
Parity Function

SIGNAL A0B, A1B, A2B, Z1, Z2, Z3, Z4: BIT;
begin

g1: INV PORT MAP (X(0), A0B);
g2: INV PORT MAP (X(1), A1B);
g3: INV PORT MAP (X(2), A2B);
g4: NAND3 PORT MAP (X(2), A1B, A0B, Z1);
g5: NAND3 PORT MAP (X(0), A1B, A2B, Z2);
g6: NAND3 PORT MAP (X(0), X(1), X(2), Z3);
g7: NAND3 PORT MAP (X(1), A2B, A0B, Z4);
g8: NAND4 PORT MAP (Z1, Z2, Z3, Z4, Z);

end Structural;

16
16

31

VHDL Top Structural Level of Ones
Count Circuit
Architecture Structural of ONES_CNT is
Component MAJ3

PORT(X: in BIT_Vector(2 downto 0); Z: out BIT);
END Component ;
Component OPAR3

PORT(X: in BIT_Vector(2 downto 0); Z: out BIT);
END Component ;
begin
-- Instantiate Components

c1: MAJ3 PORT MAP (A, C(1));
c2: OPAR3 PORT MAP (A, C(0));

end Structural;

32

VHDL Behavioral Definition of Lower
Level Components

Entity NAND2 is
PORT(I1, I2: in BIT;
O: out BIT);

end NAND2;
Architecture behavior of NAND2 is
begin

O <= not (I1 and I2);
end behavior;

Entity INV is
PORT(Ipt: in BIT;
Opt: out BIT);

end INV;
Architecture behavior of INV is
begin

Opt <= not Ipt;
end behavior;

Other Lower Level Gates Are Defined Similarly

17
17

33

VHDL Model of 2x1 Multiplexer

Entity mux2_1 IS
Generic (dz_delay: TIME := 6 NS);
PORT (sel, data1, data0: IN BIT; z: OUT BIT);

END mux2_1;

Architecture dataflow OF mux2_1 IS
Begin

z <= data1 AFTER dz_delay WHEN sel=‘1’ ELSE
data0 AFTER dz_delay;

END dataflow;

1D

0D
Z

S1

sel

data0
data1 z

34

VHDL Model of D-FF – Synchronous Reset

Entity DFF IS
Generic (td_reset, td_in: TIME := 8 NS);
PORT (reset, din, clk: IN BIT; qout: OUT BIT :=‘0’);

END DFF;
Architecture behavioral OF DFF IS
Begin

Process(clk)
Begin

IF (clk = ‘0’ AND clk’Event) Then
IF reset = ‘1’ Then

qout <= ‘0’ AFTER td_reset ;
ELSE

qout <= din AFTER td_in ;
END IF;

END IF;
END process;

END behavioral ;

1R Q

1D
1C

reset
din

clk

qout

18
18

35

VHDL Model of D-FF – Asynchronous
Reset
Entity DFF IS

Generic (td_reset, td_in: TIME := 8 NS);
PORT (reset, din, clk: IN BIT; qout: OUT BIT :=‘0’);

END DFF;
Architecture behavioral OF DFF IS
Begin

Process(clk, reset)
Begin

IF reset = ‘1’ Then
qout <= ‘0’ AFTER td_reset ;

ELSE
IF (clk = ‘0’ AND clk’Event) Then

qout <= din AFTER td_in ;
END IF;

END IF;
END process;

END behavioral ;

1R Q

1D
1C

reset
din

clk

qout

36

Divide-by-8 Counter
Entity counter IS

Generic (td_cnt: TIME := 8 NS);
PORT (reset, clk: IN BIT; counting: OUT BIT :=‘0’);
Constant limit: INTEGER :=8;

END counter ;
Architecture behavioral OF counter IS
Begin

Process(clk)
Variable count: INTEGER := limit;

Begin
IF (clk = ‘0’ AND clk’Event) THEN

IF reset = ‘1’ THEN count := 0 ;
ELSE IF count < limit THEN count:= count+1; END IF;
END IF;
IF count = limit Then counting <= ‘0’ AFTER td_cnt;
ELSE counting <= ‘1’ AFTER td_cnt;
END IF;

END IF;
END process;

END behavioral ;

19
19

37

Controller Description

Moore Sequence Detector
• Detection sequence is 110

IF 110 found on x
Then Z gets ‘1’
Else z gets ‘0’
End

x

clk
z

Reset
/0

got1
/0

got11
/0

got110
/1

0

1

0

1 1 0

1

0

38

VHDL Description of Moore 110 Sequence
Detector
ENTITY moore_110_detector IS

PORT (x, clk : IN BIT; z : OUT BIT);
END moore_110_detector;
ARCHITECTURE behavioral OF moore_110_detector IS

TYPE state IS (reset, got1, got11, got110);
SIGNAL current : state := reset;

BEGIN
PROCESS(clk)
BEGIN

IF (clk = '1' AND CLK’Event) THEN
CASE current IS

WHEN reset =>
IF x = '1' THEN current <= got1;
ELSE current <= reset; END IF;

WHEN got1 =>
IF x = '1' THEN current <= got11;
ELSE current <= reset; END IF;

WHEN got11 =>
IF x = '1' THEN current <= got11;
ELSE current <= got110; END IF;

WHEN got110 =>
IF x = '1' THEN current <= got1;
ELSE current <= reset; END IF;

END CASE;
END IF;

END PROCESS;
z <='1' WHEN current = got110 ELSE '0';

END behavioral;

20
20

39

Structural 4-Bit Comparator

40

A Cascadable Single-Bit Comparator

When a > b the a_gt_b becomes 1
When a < b the a_lt_b becomes 1
If a = b outputs become the same as corresponding inputs

21
21

41

Structural Single-Bit Comparator

Design uses basic components
The less-than and greater-than outputs use the same logic

42

Structural Model of Single-Bit
Comparator …
ENTITY bit_comparator IS

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END bit_comparator;
ARCHITECTURE gate_level OF bit_comparator IS
--
COMPONENT n1 PORT (i1: IN BIT; o1: OUT BIT); END COMPONENT ;
COMPONENT n2 PORT (i1,i2: IN BIT; o1:OUT BIT); END COMPONENT;
COMPONENT n3 PORT (i1, i2, i3: IN BIT; o1: OUT BIT); END COMPONENT;
-- Component Configuration
FOR ALL : n1 USE ENTITY WORK.inv (single_delay);
FOR ALL : n2 USE ENTITY WORK.nand2 (single_delay);
FOR ALL : n3 USE ENTITY WORK.nand3 (single_delay);
--Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;

22
22

43

… Structural Model of Single-Bit
Comparator
BEGIN
-- a_gt_b output

g0 : n1 PORT MAP (a, im1);
g1 : n1 PORT MAP (b, im2);
g2 : n2 PORT MAP (a, im2, im3);
g3 : n2 PORT MAP (a, gt, im4);
g4 : n2 PORT MAP (im2, gt, im5);
g5 : n3 PORT MAP (im3, im4, im5, a_gt_b);

-- a_eq_b output
g6 : n3 PORT MAP (im1, im2, eq, im6);
g7 : n3 PORT MAP (a, b, eq, im7);
g8 : n2 PORT MAP (im6, im7, a_eq_b);

-- a_lt_b output
g9 : n2 PORT MAP (im1, b, im8);
g10 : n2 PORT MAP (im1, lt, im9);
g11 : n2 PORT MAP (b, lt, im10);
g12 : n3 PORT MAP (im8, im9, im10, a_lt_b);

END gate_level;

44

Netlist Description of Single-Bit
Comparator
ARCHITECTURE netlist OF bit_comparator IS
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;
BEGIN
-- a_gt_b output

g0 : ENTITY Work.inv(single_delay) PORT MAP (a, im1);
g1 : ENTITY Work.inv(single_delay) PORT MAP (b, im2);
g2 : ENTITY Work.nand2(single_delay) PORT MAP (a, im2, im3);
g3 : ENTITY Work.nand2(single_delay) PORT MAP (a, gt, im4);
g4 : ENTITY Work.nand2(single_delay) PORT MAP (im2, gt, im5);
g5 : ENTITY Work.nand3(single_delay) PORT MAP (im3, im4, im5, a_gt_b);

-- a_eq_b output
g6 : ENTITY Work.nand3(single_delay) PORT MAP (im1, im2, eq, im6);
g7 : ENTITY Work.nand3(single_delay) PORT MAP (a, b, eq, im7);
g8 : ENTITY Work.nand2(single_delay) PORT MAP (im6, im7, a_eq_b);

-- a_lt_b output
g9 : ENTITY Work.nand2(single_delay) PORT MAP (im1, b, im8);
g10 : ENTITY Work.nand2(single_delay) PORT MAP (im1, lt, im9);
g11 : ENTITY Work.nand2(single_delay) PORT MAP (b, lt, im10);
g12 : ENTITY Work.nand3(single_delay) PORT MAP (im8, im9, im10, a_lt_b);

END netlist;

23
23

45

4-Bit Comparator Iterative Structural
Wiring: “For …. Generate”Statement...
ENTITY nibble_comparator IS

PORT (a, b : IN BIT_VECTOR (3 DOWNTO 0); -- a and b data inputs
gt, eq, lt : IN BIT; -- previous greater, equal & less than
a_gt_b, a_eq_b, a_lt_b : OUT BIT); -- a > b, a = b, a < b

END nibble_comparator;
--

ARCHITECTURE iterative OF nibble_comparator IS

COMPONENT comp1
PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);

END COMPONENT;
FOR ALL : comp1 USE ENTITY WORK.bit_comparator (gate_level);
SIGNAL im : BIT_VECTOR (0 TO 8);

BEGIN

c0: comp1 PORT MAP (a(0), b(0), gt, eq, lt, im(0), im(1), im(2));

46

… 4-Bit Comparator: “For …….
Generate” Statement

c1to2: FOR i IN 1 TO 2 GENERATE

c: comp1 PORT MAP (a(i), b(i), im(i*3-3), im(i*3-2), im(i*3-1),
im(i*3+0), im(i*3+1), im(i*3+2));

END GENERATE;
c3: comp1 PORT MAP (a(3), b(3), im(6), im(7), im(8), a_gt_b,
a_eq_b, a_lt_b);

END iterative;

USE BIT_VECTOR for Ports a & b
Separate first and last bit-slices from others
Arrays FOR intermediate signals facilitate iterative wiring
Can easily expand to an n-bit comparator

24
24

47

4-Bit Comparator: “IF …… Generate”
Statement …
ARCHITECTURE iterative OF nibble_comparator IS

--
COMPONENT comp1

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END COMPONENT;
--
FOR ALL : comp1 USE ENTITY WORK.bit_comparator (gate_level);
CONSTANT n : INTEGER := 4;
SIGNAL im : BIT_VECTOR (0 TO (n-1)*3-1);
--

BEGIN
c_all: FOR i IN 0 TO n-1 GENERATE

l: IF i = 0 GENERATE
least: comp1 PORT MAP (a(i), b(i), gt, eq, lt, im(0), im(1), im(2));
END GENERATE;

48

… 4-Bit Comparator: “IF ……
Generate” Statement
--

m: IF i = n-1 GENERATE
most: comp1 PORT MAP (a(i), b(i), im(i*3-3), im(i*3-2),

im(i*3-1), a_gt_b, a_eq_b, a_lt_b);
END GENERATE;

--
r: IF i > 0 AND i < n-1 GENERATE
rest: comp1 PORT MAP (a(i), b(i), im(i*3-3), im(i*3-2),

im(i*3-1), im(i*3+0), im(i*3+1), im(i*3+2));
END GENERATE;

--
END GENERATE; -- Outer Generate
END iterative;

25
25

49

4-Bit Comparator: Alternative
Architecture (Single Generate)
ARCHITECTURE Alt_iterative OF nibble_comparator IS
constant n: Positive :=4;
COMPONENT comp1

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END COMPONENT;
FOR ALL : comp1 USE ENTITY WORK.bit_comparator (gate_level);
SIGNAL im : BIT_VECTOR (0 TO 3*n+2);
BEGIN
im(0 To 2) <= gt&eq<
cALL: FOR i IN 0 TO n-1 GENERATE
c: comp1 PORT MAP (a(i), b(i), im(i*3), im(i*3+1), im(i*3+2),
im(i*3+3), im(i*3+4), im(i*3+5));
END GENERATE;
a_gt_b <= im(3*n);
a_eq_b <= im(3*n+1);
a_lt_b <= im(3*n+2);
END Alt_iterative ;

50

Design Parameterization …

GENERICs can pass design parameters
GENERICs can include default values
New versions of gate descriptions contain timing

ENTITY inv_t IS
GENERIC (tplh : TIME := 3 NS; tphl : TIME := 5 NS);
PORT (i1 : in BIT; o1 : out BIT);
END inv_t;
--
ARCHITECTURE average_delay OF inv_t IS
BEGIN
o1 <= NOT i1 AFTER (tplh + tphl) / 2;
END average_delay;

26
26

51

… Design Parameterization …

ENTITY nand2_t IS
GENERIC (tplh : TIME := 4 NS;
tphl : TIME := 6 NS);
PORT (i1, i2 : IN BIT; o1 : OUT
BIT);
END nand2_t;
--
ARCHITECTURE average_delay
OF nand2_t IS
BEGIN
o1 <= i1 NAND i2 AFTER (tplh +
tphl) / 2;
END average_delay;

ENTITY nand3_t IS
GENERIC (tplh : TIME := 5 NS;
tphl : TIME := 7 NS);
PORT (i1, i2, i3 : IN BIT; o1 :
OUT BIT);
END nand3_t;
--
ARCHITECTURE average_delay
OF nand3_t IS
BEGIN
o1 <= NOT (i1 AND i2 AND i3)
AFTER (tplh + tphl) / 2;
END average_delay;

52

Using Default values …
ARCHITECTURE default_delay OF bit_comparator IS
Component n1 PORT (i1: IN BIT; o1: OUT BIT);
END Component;
Component n2 PORT (i1, i2: IN BIT; o1: OUT BIT);
END Component;
Component n3 PORT (i1, i2, i3: IN BIT; o1: OUT BIT);
END Component;
FOR ALL : n1 USE ENTITY WORK.inv_t (average_delay);
FOR ALL : n2 USE ENTITY WORK.nand2_t (average_delay);
FOR ALL : n3 USE ENTITY WORK.nand3_t (average_delay);
-- Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;
BEGIN
-- a_gt_b output
g0 : n1 PORT MAP (a, im1);
g1 : n1 PORT MAP (b, im2);
g2 : n2 PORT MAP (a, im2, im3);
g3 : n2 PORT MAP (a, gt, im4);
g4 : n2 PORT MAP (im2, gt, im5);
g5 : n3 PORT MAP (im3, im4, im5, a_gt_b);

No Generics Specified in
Component Declarations

27
27

53

… Using Default values
-- a_eq_b output
g6 : n3 PORT MAP (im1, im2, eq, im6);
g7 : n3 PORT MAP (a, b, eq, im7);
g8 : n2 PORT MAP (im6, im7, a_eq_b);
-- a_lt_b output
g9 : n2 PORT MAP (im1, b, im8);
g10 : n2 PORT MAP (im1, lt, im9);
g11 : n2 PORT MAP (b, lt, im10);
g12 : n3 PORT MAP (im8, im9, im10, a_lt_b);
END default_delay;

•Component declarations do not contain GENERICs
•Component instantiation are as before
•If default values exist, they are used

54

Assigning Fixed Values to Generic
Parameters …
ARCHITECTURE fixed_delay OF bit_comparator IS
Component n1
Generic (tplh, tphl : Time); Port (i1: in Bit; o1: out Bit);
END Component;
Component n2
Generic (tplh, tphl : Time); Port (i1, i2: in Bit; o1: out Bit);
END Component;
Component n3
Generic (tplh, tphl : Time); Port (i1, i2, i3: in Bit; o1: out Bit);
END Component;
FOR ALL : n1 USE ENTITY WORK.inv_t (average_delay);
FOR ALL : n2 USE ENTITY WORK.nand2_t (average_delay);
FOR ALL : n3 USE ENTITY WORK.nand3_t (average_delay);
-- Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;
BEGIN
-- a_gt_b output
g0 : n1 Generic Map (2 NS, 4 NS) Port Map (a, im1);
g1 : n1 Generic Map (2 NS, 4 NS) Port Map (b, im2);
g2 : n2 Generic Map (3 NS, 5 NS) Port Map (a, im2, im3);

28
28

55

… Assigning Fixed Values to Generic
Parameters
g3 : n2 Generic Map (3 NS, 5 NS) Port Map P (a, gt, im4);
g4 : n2 Generic Map (3 NS, 5 NS) Port Map (im2, gt, im5);
g5 : n3 Generic Map (4 NS, 6 NS) Port Map (im3, im4, im5, a_gt_b);
-- a_eq_b output
g6 : n3 Generic Map (4 NS, 6 NS) Port Map (im1, im2, eq, im6);
g7 : n3 Generic Map (4 NS, 6 NS) PORT MAP (a, b, eq, im7);
g8 : n2 Generic Map (3 NS, 5 NS) PORT MAP (im6, im7, a_eq_b);
-- a_lt_b output
g9 : n2 Generic Map (3 NS, 5 NS) Port Map (im1, b, im8);
g10 : n2 Generic Map (3 NS, 5 NS) PORT MAP (im1, lt, im9);
g11 : n2 Generic Map (3 NS, 5 NS) PORT MAP (b, lt, im10);
g12 : n3 Generic Map (4 NS, 6 NS) PORT MAP (im8, im9, im10, a_lt_b);
END fixed_delay;

•Component declarations contain GENERICs
•Component instantiation contain GENERIC Values
•GENERIC Values overwrite default values

56

Instances with OPEN Parameter
Association

ARCHITECTURE iterative OF
nibble_comparator IS
………………….
BEGIN
c0: comp1
GENERIC MAP (Open, Open, 8
NS, Open, Open, 10 NS)
PORT MAP (a(0), b(0), gt, eq, lt,
im(0), im(1), im(2));
………………….
END iterative;

ARCHITECTURE iterative OF
nibble_comparator IS
………………….
BEGIN
c0: comp1
GENERIC MAP (tplh3 => 8 NS,
tphl3 => 10 NS)
PORT MAP (a(0), b(0), gt, eq, lt,
im(0), im(1), im(2));
……………………
END iterative;

•A GENERIC Map may specify only some of the parameters
•Using OPEN causes use of default component values
•Alternatively, association by name can be used
•Same applies to PORT MAP

29
29

57

Structural Test Bench

A Testbench is an Entity
without Ports that has a
Structural Architecture
The Testbench Architecture,
in general, has 3 major
components:
• Instance of the Entity Under

Test (EUT)
• Test Pattern Generator (

Generates Test Inputs for the
Input Ports of the EUT)

• Response Evaluator
(Compares the EUT Output
Signals to the Expected
Correct Output)

58

Testbench Example …
Entity nibble_comparator_test_bench IS
End nibble_comparator_test_bench ;
--
ARCHITECTURE input_output OF nibble_comparator_test_bench IS
--
COMPONENT comp4 PORT (a, b : IN bit_vector (3 DOWNTO 0);
gt, eq, lt : IN BIT;
a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END COMPONENT;
--
FOR a1 : comp4 USE ENTITY WORK.nibble_comparator(iterative);
--
SIGNAL a, b : BIT_VECTOR (3 DOWNTO 0);
SIGNAL eql, lss, gtr, gnd : BIT;
SIGNAL vdd : BIT := '1';
--
BEGIN
a1: comp4 PORT MAP (a, b, gnd, vdd, gnd, gtr, eql, lss);
--

30
30

59

…Testbench Example
a2: a <= "0000", -- a = b (steady state)
"1111" AFTER 0500 NS, -- a > b (worst case)
"1110" AFTER 1500 NS, -- a < b (worst case)
"1110" AFTER 2500 NS, -- a > b (need bit 1 info)
"1010" AFTER 3500 NS, -- a < b (need bit 2 info)
"0000" AFTER 4000 NS, -- a < b (steady state, prepare FOR next)
"1111" AFTER 4500 NS, -- a = b (worst case)
"0000" AFTER 5000 NS, -- a < b (need bit 3 only, best case)
"0000" AFTER 5500 NS, -- a = b (worst case)
"1111" AFTER 6000 NS; -- a > b (need bit 3 only, best case)
--
a3 : b <= "0000", -- a = b (steady state)
"1110" AFTER 0500 NS, -- a > b (worst case)
"1111" AFTER 1500 NS, -- a < b (worst case)
"1100" AFTER 2500 NS, -- a > b (need bit 1 info)
"1100" AFTER 3500 NS, -- a < b (need bit 2 info)
"1101" AFTER 4000 NS, -- a < b (steady state, prepare FOR next)
"1111" AFTER 4500 NS, -- a = b (worst case)
"1110" AFTER 5000 NS, -- a < b (need bit 3 only, best case)
"0000" AFTER 5500 NS, -- a = b (worst case)
“0111" AFTER 6000 NS; -- a > b (need bit 3 only, best case)
END input_output;

60

VHDL Predefined Operators

Logical Operators: NOT, AND, OR, NAND, NOR, XOR, XNOR
• Operand Type: Bit, Boolean, Bit_vector
• Result Type: Bit, Boolean, Bit_vector

Relational Operators: =, /=, <, <=, >, >=
• Operand Type: Any type
• Result Type: Boolean

Arithmetic Operators: +, -, *, /
• Operand Type: Integer, Real
• Result Type: Integer, Real

Concatenation Operator: &
• Operand Type: Arrays or elements of same type
• Result Type: Arrays

Shift Operators: SLL, SRL, SLA, SRA, ROL, ROR
• Operand Type: Bit or Boolean vector
• Result Type: same type

31
31

61

VHDL Reserved Words
abs disconnect label package
access downto library Poll units
after linkage procedure until
alias else loop process use
all elsif variable
and end map range
architecture entity mod record wait
array exit nand register when
assert new rem while
attribute file next report with
begin for nor return xor
block function not select
body generate null severity
buffer generic of signal
bus guarded on subtype
case if open then
component in or to
configuration inout others transport
constant is out type

62

VHDL Language Grammar

Formal grammar of the IEEE Standard 1076-1993 VHDL
language in BNF format
• http://www.iis.ee.ethz.ch/~zimmi/download/vhdl93_syntax.ht

ml

32
32

63

VHDL Objects …

VHDL OBJECT : Something that can hold a value of a
given Data Type.
VHDL has 3 classes of objects
• CONSTANTS
• VARIABLES
• SIGNALS

Every object & expression must unambiguously
belong to one named Data Type
Every object must be Declared.

64

… VHDL Object …

Obj_Class <id_list> : Type/SubType [signal_kind] [:= expression];

≥ 1
identifier

(,)

C
o
n
s
t
a
n
t

V
a
r
i
a
b
l
e

S
i
g
n
a
l

BUS Register

Only for Signals

Default Initial Value
(not Optional for Constant

Declarations)

Syntax

F

i

l

e

33
33

65

… VHDL Object …

Value of Constants must be specified when declared.
Initial values of Variables or Signals may be specified
when declared.
If not explicitly specified, Initial values of Variables or
Signals default to the value of the Left Element in the
type range specified in the declaration.
Examples:
• Constant Rom_Size : Integer := 2**16;
• Constant Address_Field : Integer := 7;
• Constant Ovfl_Msg : String (1 To 20) := ``Accumulator

OverFlow``;
• Variable Busy, Active : Boolean := False;
• Variable Address : Bit_Vector (0 To Address_Field) :=

``00000000``;
• Signal Reset: Bit := `0`;

66

Variables vs. Signals

34
34

67

Signal Assignments …

Syntax:
Target Signal <= [Transport] Waveform ;
Waveform := Waveform_element {, Waveform_element }
Waveform_element := Value_Expression [After Time_Expression]

Examples:
• X <= ‘0’ ; -- Assignment executed After δ delay
• S <= ‘1’ After 10 ns;
• Q <= Transport ‘1’ After 10 ns;
• S <= ‘1’ After 5 ns, ‘0’ After 10 ns, ‘1’ After 15 ns;

Signal assignment statement
• mostly concurrent (within architecture bodies)
• can be sequential (within process body)

68

… Signal Assignments

Concurrent signal assignments are order independent
Sequential signal assignments are order dependent
Concurrent signal assignments are executed
• Once at the beginning of simulation
• Any time a signal on the right hand side changes

Time
Increases

35
35

69

Delta Delay

If no Time Delay is explicitly specified, Signal
assignment is executed after a δ-delay
• Delta is a simulation cycle , and not a real time
• Delta is used for scheduling
• A million deltas do not add to a femto second

ARCHITECTURE concurrent
OF timing_demo IS
SIGNAL a, b, c : BIT := '0';
BEGIN
a <= '1';
b <= NOT a;
c <= NOT b;
END concurrent;

70

Signal Attributes…

Attributes are named characteristics of an Object (or
Type) which has a value that can be referenced.
Signal Attributes
• S`Event -- Is TRUE if Signal S has changed.
• S`Stable(t) -- Is TRUE if Signal S has not changed for the

last ``t`` period. If t=0; it is written as S`Stable
• S`Last_Value -- Returns the previous value of S before the

last change.
• S`Active -- -- Is TRUE if Signal S has had a transaction in the

current simulation cycle.
• S`Quiet(t) -- -- Is TRUE if no transaction has been placed on

Signal S for the last ``t`` period. If t=0; it is written as S`Quiet
• S`Last_Event -- Returns the amount of time since the last

value change on S.

36
36

71

Subprograms…

Subprograms consist of functions and procedures.
Subprograms are used to
• Simplify coding,
• Achieve modularity,
• Improve readability.

Functions return values and cannot alter values of
their parameters.
Procedures used as a statement and can alter values
of their parameters.
All statements inside a subprogram are sequential.

72

…Subprograms

Subprograms
• Concurrent
• Sequential

Concurrent subprograms exist outside of a process or
another subprogram.
Sequential subprograms exist in a process statement
or another subprogram.
A procedure exists as a separate statement in
architecture or process.
A function usually used in assignment statement or
expression.

37
37

73

Functions

Function specification:
• Name of the function
• Formal parameters of the function

• Name of the parameter
• Type of the parameter
• Mode IN is default & only allowed mode
• Class constant is default

• Return type of the function
• Local declarations

A function body
• Must contain at least one return statement
• May not contain a wait statement

74

A Left-Shift Function

Subtype Byte IS Bit_Vector (7 Downto 0);
Function SLL (V: Byte; N: Natural; Fill: Bit) Return Byte IS

Variable Result: Byte := V;
Begin

For I IN 1 To N Loop
Result := Result (6 Downto 0) & Fill;

End Loop;
Return Result;

End SLL;

38
38

75

Using the Function
Architecture Functional Of LeftShifter IS

Subtype Byte IS Bit_Vector (7 Downto 0);
Function SLL (V: Byte; N: Natural; Fill: Bit) Return Byte is

Variable Result: Byte := V;
Begin

For I IN 1 To N Loop
Result := Result (6 Downto 0) & Fill;

End Loop;
Return Result;

End SLL;

Begin
Sout <= SLL(Sin, 1, ‘0’) After 12 ns;

End Functional;

76

A Single-Bit Comparator

Entity Bit_Comparator IS
Port (a, b, -- data inputs

gt, -- previous greater than
eq, -- previous equal
lt: IN BIT; -- previous less than

a_gt_b, -- greater
a_eq_b, -- equal
a_lt_b: OUT BIT); -- less than

End Bit_Comparator;

a_gt_b = a . gt + b` . gt + a . b`
a_eq_b = a . b . eq + a` . b` . eq
a_lt_b = b . lt + a` . lt + b . a`

39
39

77

A Single-Bit Comparator using
Functions
Architecture Functional of Bit_Comparator IS

Function fgl (w, x, gl: BIT) Return BIT IS
Begin

Return (w AND gl) OR (NOT x AND gl) OR (w AND NOT x);
End fgl;

Function feq (w, x, eq: BIT) Return BIT IS
Begin

Return (w AND x AND eq) OR (NOT w AND NOT x AND eq);
End feq;

Begin
a_gt_b <= fgl (a, b, gt) after 12 ns;
a_eq_b <= feq (a, b, eq) after 12 ns;
a_lt_b <= fgl (b, a, lt) after 12 ns;

End Functional;

78

Binary to Integer Conversion Function

Function To_Integer (Bin : BIT_VECTOR) Return Integer IS
Variable Result: Integer;

Begin
Result := 0;
For I IN Bin`RANGE Loop

If Bin(I) = ‘1’ then
Result := Result + 2**I;

End if;
End Loop;
Return Result;

End To_Integer;

40
40

79

Procedure Specification

Name of the procedure
Formal parameters of the procedure
• Class of the parameter

• optional
• defaults to constant

• Name of the parameter
• Mode of the parameter

• optional
• defaults to IN

• Type of the parameter

Local declarations

80

A Left-Shift Procedure

Subtype Byte is Bit_Vector (7 downto 0);
Procedure SLL (Signal Vin : In Byte; Signal Vout :out
Byte; N: Natural; Fill: Bit;
ShiftTime: Time) IS

Variable Temp: Byte := Vin;
Begin

For I IN 1 To N Loop
Temp := Temp (6 downto 0) & Fill;

End Loop;
Vout <= Temp after N * ShiftTime;

End SLL;

41
41

81

Using the Procedure
Architecture Procedural of LeftShifter is

Subtype Byte is Bit_Vector (7 downto 0);
Procedure SLL (Signal Vin : In Byte; Signal Vout :out Byte; N: Natural;
Fill: Bit; ShiftTime: Time) IS

Variable Temp: Byte := Vin;
Begin

For I IN 1 To N Loop
Temp := Temp (6 downto 0) & Fill;

End Loop;
Vout <= Temp after N * ShiftTime;

End SLL;
Begin

Process (Sin)
Begin

SLL(Sin, Sout, 1, ‘0’, 12 ns) ;
End process;

End Procedural;

82

Binary to Integer Conversion
Procedure

Procedure Bin2Int (Bin : IN BIT_VECTOR; Int: OUT Integer) IS
Variable Result: Integer;

Begin
Result := 0;
For I IN Bin`RANGE Loop

If Bin(I) = ‘1’ Then
Result := Result + 2**I;

End If;
End Loop;
Int := Result;

End Bin2Int;

42
42

83

Integer to Binary Conversion
Procedure
Procedure Int2Bin (Int: IN Integer; Bin : OUT BIT_VECTOR) IS

Variable Tmp: Integer;
Begin

Tmp := Int;
For I IN 0 To (Bin`Length - 1) Loop

If (Tmp MOD 2 = 1) Then
Bin(I) := ‘1’;

Else Bin(I) := ‘0’;
End If;
Tmp := Tmp / 2;

End Loop;
End Int2Bin;

84

Packages…

A package is a common storage area used to hold data
to be shared among a number of entities.
Packages can encapsulate subprograms to be shared.
A package consists of
• Declaration section
• Body section

The package declaration section contains subprogram
declarations, not bodies.
The package body contains the subprograms’ bodies.
The package declaration defines the interface for the
package.

43
43

85

…Packages

All items declared in the package declaration section
are visible to any design unit that uses the package.
A package is used by the USE clause.
The interface to a package consists of any
subprograms or deferred constants declared in the
package declaration.
The subprogram and deferred constant declarations
must have a corresponding subprogram body and
deferred constant value in the package body.
Package body May contain other declarations needed
solely within the package body.
• Not visible to external design units.

86

Package Declaration

The package declaration section can contain:
• Subprogram declaration
• Type, subtype declaration
• Constant, deferred constant declaration
• Signal declaration creates a global signal
• File declaration
• Alias declaration
• Component declaration
• Attribute declaration, a user-defined attribute
• Attribute specification
• Use clause

44
44

87

Package Body

The package body main purpose is
• Define the values of deferred constants
• Specify the subprogram bodies for subprograms declared in

the package declaration

The package body can also contain:
• Subprogram declaration
• Subprogram body
• Type, subtype declaration
• Constant declaration, which fills in the value for deferred

constants
• File declaration
• Alias declaration
• Use clause

88

Existing Packages

Standard Package
• Defines primitive types, subtypes, and functions.
• e.g. Type Boolean IS (false, true);
• e.g. Type Bit is (‘0’, ‘1’);

TEXTIO Package
• Defines types, procedures, and functions for standard text I/O

from ASCII files.

45
45

89

Package Example for Component
Declaration

Package simple_gates is
COMPONENT n1 PORT (i1: IN BIT; o1: OUT BIT); END COMPONENT ;
COMPONENT n2 PORT (i1,i2: IN BIT;o1:OUT BIT);END COMPONENT;
COMPONENT n3 PORT (i1, i2, i3: IN BIT; o1: OUT BIT); END COMPONENT;
end simple_gates;

Use work.simple_gates.all;
ENTITY bit_comparator IS

PORT (a, b, gt, eq, lt : IN BIT; a_gt_b, a_eq_b, a_lt_b : OUT BIT);
END bit_comparator;
ARCHITECTURE gate_level OF bit_comparator IS
FOR ALL : n1 USE ENTITY WORK.inv (single_delay);
FOR ALL : n2 USE ENTITY WORK.nand2 (single_delay);
FOR ALL : n3 USE ENTITY WORK.nand3 (single_delay);
--Intermediate signals
SIGNAL im1,im2, im3, im4, im5, im6, im7, im8, im9, im10 : BIT;
BEGIN
-- description of architecture
END gate_level;

90

Package Example…

Package Shifters IS
Subtype Byte IS Bit_Vector (7 Downto 0);
Function SLL (V: Byte; N: Natural; Fill: Bit := ‘0’) Return Byte;
Function SRL (V: Byte; N: Natural; Fill: Bit := ‘0’) Return Byte;
Function SLA (V: Byte; N: Natural; Fill: Bit := ‘0’) Return Byte;
Function SRA (V: Byte; N: Natural) Return Byte;
Function RLL (V: Byte; N: Natural) Return Byte;
Function RRL (V: Byte; N: Natural) Return Byte;

End Shifters;

46
46

91

…Package Example…

Package Body Shifters IS
Function SLL (V: Byte; N: Natural; Fill: Bit) Return Byte is

Variable Result: Byte := V;
Begin

If N >= 8 Then
Return (Others => Fill);

End If;
For I IN 1 To N Loop

Result := Result (6 Downto 0) & Fill;
End Loop;
Return Result;

End SLL;
.
.
.

End Shifters;

92

…Package Example

USE WORK.Shifters.ALL
Architecture Functional of LeftShifter IS
Begin

Sout <= SLL(Sin, 1, ‘0’) After 12 ns;
End Functional;

47
47

93

Another Package Example…

Package Basic_Utilities IS
Type Integers IS Array (0 to 5) of Integer;
Function fgl (w, x, gl: BIT) Return BIT;
Function feq (w, x, eq: BIT) Return BIT;
Procedure Bin2Int (Bin : IN BIT_VECTOR; Int: OUT Integer);
Procedure Int2Bin (Int: IN Integer; Bin : OUT BIT_VECTOR);
Procedure Apply_Data (

Signal Target: OUT Bit_Vector (3 Downto 0);
Constant Values: IN Integers;
Constant Period: IN Time);

Function To_Integer (Bin : BIT_VECTOR) Return Integer;

End Basic_Utilities;

94

…Another Package Example…

Package Body Basic_Utilities IS
Function fgl (w, x, gl: BIT) Return BIT IS

Begin
Return (w AND gl) OR (NOT x AND gl) OR (w AND NOT x);

End fgl;
Function feq (w, x, eq: BIT) Return BIT IS

Begin
Return (w AND x AND eq) OR (NOT w AND NOT x AND eq);

End feq;
.
.
.

End Basic_Utilities;

48
48

95

…Another Package Example

USE WORK.Basic_Utilities.ALL
Architecture Functional of Bit_Comparator IS
Begin

a_gt_b <= fgl (a, b, gt) after 12 ns;
a_eq_b <= feq (a, b, eq) after 12 ns;
a_lt_b <= fgl (b, a, lt) after 12 ns;

End Functional;

96

Design Libraries…

VHDL supports the use of design libraries for
categorizing components or utilities.
Applications of libraries include
• Sharing of components between designers
• Grouping components of standard logic families
• Categorizing special-purpose utilities such as subprograms or

types

Two Types of Libraries
• Working Library (WORK) {A Predefined library into which a

Design Unit is Placed after Compilation.},
• Resource Libraries {Contain design units that can be

referenced within the design unit being compiled}.

49
49

97

… Design Libraries…

Only one library can be the Working library
Any number of Resource Libraries may be used by a
Design Entity
There is a number of predefined Resource Libraries
The Library clause is used to make a given library visible
The Use clause causes Package Declarations within a
Library to be visible
Library management tasks, e.g. Creation or Deletion, are
not part of the VHDL Language Standard Tool
Dependent

98

… Design Libraries…

Exiting libraries
• STD Library

• Contains the STANDARD and TEXTIO packages
• Contains all the standard types & utilities
• Visible to all designs

• WORK library
• Root library for the user

IEEE library
• Contains VHDL-related standards
• Contains the std_logic_1164 (IEEE 1164.1) package

• Defines a nine values logic system
• De Facto Standard for all Synthesis Tools

50
50

99

…Design Libraries

To make a library visible to a design
• LIBRARY libname;

The following statement is assumed by all designs
• LIBRARY WORK;

To use the std_logic_1164 package
• LIBRARY IEEE
• USE IEEE.std_logic_1164.ALL

By default, every design unit is assumed to contain the
following declarations:
• LIBRARY STD , work ;
• USE STD.Standard.All ;

100

Arithmetic & Logical Operators for
std_logic : Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity example is
port (a, b: IN std_logic_vector (7 downto 0));
end example;
architecture try of example is
signal x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 : std_logic_vector (7 downto 0);
begin

x1 <= not a;
x2 <= a and b;
x3 <= a nand b;
x4 <= a or b;
x5 <= a nor b;
x6 <= a xor b;
x7 <= a xnor b;
x8 <= a + b;
x9 <= a - b;
x10 <= "+" (a, b);

end try;

51
51

101

DATA TYPES

Data Types

A Data Type defines a set of values & a set of
operations.
VHDL is a strongly-typed Language. Types cannot be
mixed in Expressions or in assigning values to
Objects in general

COMPOSITES

• Arrays

• Records

SCALARS

• Numeric
(Integer, Real)

• Enumerations

•Physical

File Type &

Access Type

• Not Used for
H/W Modeling

102

Scalar Data Types

SYNTAX
• TYPE Identifier IS Type-Definition

Numeric Data Type
• Type-Definition is a Range_Constraint as follows:
• Type-Definition := Range Initial-Value < To | DownTo> Final-

Value

Examples
• TYPE address IS RANGE 0 To 127;
• TYPE index IS RANGE 7 DownTo 0;
• TYPE voltage IS RANGE -0.5 To 5.5;

52
52

103

Number Formats

Integers have no Decimal Point.
Integers may be Signed or Unsigned (e.g. -5 356)
A Real number must have either a Decimal Point, a -ive Exponent
Term (Scientific Notation), or both.
Real numbers may be Signed or Unsigned (e.g. -3.75 1E-9 1.5E-
12)
Based Numbers:
• Numbers Default to Base 10 (Decimal)
• VHDL Allows Expressing Numbers Using Other Bases
• Syntax

• B#nnnn# -- Number nnnn is in Base B
• Examples

• 16#DF2# -- Base 16 Integer (HEX)
• 8#7134# -- Base 8 Integer (OCTAL)
• 2#10011# -- Base 2 Integer (Binary)
• 16#65_3EB.37# -- Base 16 REAL (HEX)

104

Predefined Numeric Data Types

INTEGER -- Range is Machine limited but At
Least -(231 - 1) To (231 - 1)

POSITIVE -- INTEGERS > 0
NATURAL -- INTEGERS >= 0
REAL -- Range is Machine limited

53
53

105

Enumeration Data Type

Parenthesized ordered list of literals.
• Each may be an identifier or a character literal.
• The list elements are separated by commas

A Position # is associated with each element in the List
Position #`s begin with 0 for the Leftmost Element
Variables & Signals of type ENUMERATION will have
the leftmost element as their Default (Initial) value
unless, otherwise explicitly assigned.
Examples
• TYPE Color IS (Red, Orange, Yellow, Green, Blue,

Indigo, Violet);
• TYPE Tri_Level IS (`0`, `1`, `Z`);
• TYPE Bus_Kind IS (Data, Address, Control);
• TYPE state IS (Init, Xmit, Receive, Wait, Terminal);

106

Predefined Enumerated Data Types
TYPE BIT IS (`0` , `1`) ;
TYPE BOOLEAN IS (False, True) ;
TYPE CHARACTER IS (128 ASCII Chars......) ;
TYPE Severity_Level IS (Note, Warning, Error, Failure) ;
TYPE Std_U_Logic IS (

`U` , -- Uninitialized
`X` , -- Forcing Unknown
`0` , -- Forcing 0
`1` , -- Forcing 1
`Z` , -- High Impedence
`W` , -- Weak Unknown
`L` , -- Weak 0
`H` , -- Weak 1
`-` , -- Don`t Care
) ;

SUBTYPE Std_Logic IS resolved Std_U_Logic ;

54
54

107

Physical Data Type

Specifies a Range Constraint , one Base Unit, and 0 or
more secondary units.
Base unit is indivisible, i.e. no fractional quantities of
the Base Units are allowed.
Secondary units must be integer multiple of the
indivisible Base Unit.
Examples
TYPE Resistance IS Range 1 To Integer’High

Units
Ohm; -- Base Unit
Kohm = 1000 Ohm; -- Secondary Unit
Mohm = 1000 Kohm; -- Secondary Unit

end Units ;

108

Predefined Physical Data Types

Time is the ONLY predefined Physical data type

TYPE Time IS Range 0 To 1E20
Units

fs; -- Base Unit (Femto Second = 1E-15 Second)
ps = 1000 fs; -- Pico_Second
ns = 1000 ps; -- Nano_Second
us = 1000 ns; -- Micro_Second
ms = 1000 us; -- Milli_Second
sec = 1000 ms;-- Second
min = 60 sec; -- Minuite
hr = 60 min; -- Hour

end Units ;

55
55

109

Composite Data Types: Arrays

Elements of an Array have the same data type
Arrays may be Single/Multi - Dimensional
Array bounds may be either Constrained or Unconstrained.
Constrained Arrays
• Array Bounds Are Specified
• Syntax:

• TYPE id Is Array (Range_Constraint) of Type;
Examples
• TYPE word Is Array (0 To 7) of Bit;
• TYPE pattern Is Array (31 DownTo 0) of Bit;
• 2-D Arrays

• TYPE col Is Range 0 To 255;
• TYPE row Is Range 0 To 1023;
• TYPE Mem_Array Is Array (row, col) of Bit;
• TYPE Memory Is Array (row) of word;

110

Unconstrained Arrays

Array Bounds not specified through using the notation
RANGE<>
Type of each Dimension is specified, but the exact
Range and Direction are not Specified.
Useful in Interface_Lists Allows Dynamic Sizing of
Entities , e.g. Registers.
Bounds of Unconstrained Arrays in such entities
assume the Actual Array Sizes when wired to the
Actual Signals.
Example
• TYPE Screen Is Array (Integer Range<> , Integer Range<>)

of BIT;

56
56

111

Predefined Array Types

Two UNCONSTRAINED Array Types are predefined
BIT_VECTOR
• TYPE Bit_Vector Is Array (Natural Range<>) of Bit;

String
• TYPE String Is Array (Positive Range<>) of Character;

Example
• SUBTYPE Pixel Is Bit_Vector (7 DownTo 0);

112

DATA FLOW MODEL

Represents Register Transfer operations
There is Direct Mapping between Data Flow Statements
&& Register Structural Model
• Implied Module Connectivity
• Implied Muxes & Buses

Main Data Flow VHDL Constructs
• Concurrent Signal Assignment Statements
• Block Statement

57
57

113

Signal Assignment …

Unconditional: Both Sequential & Concurrent.
Conditional: Only Concurrent; Conditions must be
Boolean, may overlap and need not be Exhaustive.
Selected: Only Concurrent; Cases must not overlap
and must be Exhaustive.
Conditional Signal Assignment

[Label:] target <= [Guarded] [Transport]
Wave1 when Cond1 Else
Wave2 when Cond2 Else
……………………………..
Waven-1 when Condn-1 Else
Waven ; -- Mandatory Wave

114

… Signal Assignment

Selected Signal Assignment

With Expression Select
target <= [Guarded] [Transport]

Wave1 when Choice1 ,
Wave2 when Choice2 ,
……………………………
Waven-1 when Choicen-1 ,
Waven when OTHERS ;

VHDL-93: Any Wavei can be replaced by the Keyword
UNAFFECTED (Which doesn’t schedule any Transactions on
the target signal.)

58
58

115

Signal Assignment Examples
Example: A 2x4 Decoder
Signal D : Bit_Vector(1 To 4) := “0000”;
Signal S0, S1 : Bit;
…………………………………………
Decoder: D <= “0001” after T When S1=‘0’ and S0=‘0’ else

“0010” after T When S1=‘0’ else
“0100” after T When S0=‘0’ else “1000” ;

Example: 4-Phase Clock Generator
Signal Phi4 : Bit_Vector(1 To 4) := “0000”;
…………………………………………
ClkGen: With Phi4 Select

Phi4 <= “1000” after T When “0000” ,
“0100” after T When “1000” ,
“0010” after T When “0100” ,

“0001” after T When “0010” ,
“1000” after T When “0001” ,
“0000” When Others ; -- Exhaustive

116

Multiplexing …

Multiplexers are used for data selection

59
59

117

… Multiplexing
USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: qit, qit_vector
ENTITY mux_8_to_1 IS
PORT (i7, i6, i5, i4, i3, i2, i1, i0 : IN qit;
s7, s6, s5, s4, s3, s2, s1, s0 : IN qit; z : OUT qit);
END mux_8_to_1;
--
ARCHITECTURE dataflow OF mux_8_to_1 IS
SIGNAL sel_lines : qit_vector (7 DOWNTO 0);
BEGIN
sel_lines <= s7&s6&s5&s4&s3&s2&s1&s0;
WITH sel_lines SELECT
z <= '0' AFTER 3 NS WHEN "00000000",
i7 AFTER 3 NS WHEN "10000000" | "Z0000000",
i6 AFTER 3 NS WHEN "01000000" | "0Z000000",
i5 AFTER 3 NS WHEN "00100000" | "00Z00000",
i4 AFTER 3 NS WHEN "00010000" | "000Z0000",
i3 AFTER 3 NS WHEN "00001000" | "0000Z000",
i2 AFTER 3 NS WHEN "00000100" | "00000Z00",
i1 AFTER 3 NS WHEN "00000010" | "000000Z0",
i0 AFTER 3 NS WHEN "00000001" | "0000000Z",
'X' WHEN OTHERS;
END dataflow;

118

3-to-8 Decoder
USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE : qit_vector
ENTITY dcd_3_to_8 IS
PORT (adr : IN qit_vector (2 DOWNTO 0);
so : OUT qit_vector (7 DOWNTO 0));
END dcd_3_to_8;
--
ARCHITECTURE dataflow OF dcd_3_to_8 IS
BEGIN
WITH adr SELECT
so <= "00000001" AFTER 2 NS WHEN "000",
"00000010" AFTER 2 NS WHEN "00Z" | "001",
"00000100" AFTER 2 NS WHEN "0Z0" | "010",
"00001000" AFTER 2 NS WHEN "0ZZ" | "0Z1" | "01Z" |
"011",
"00010000" AFTER 2 NS WHEN "100" | "Z00",
"00100000" AFTER 2 NS WHEN "Z0Z" | "Z01" | "10Z" |
"101",
"01000000" AFTER 2 NS WHEN "ZZ0" | "Z10" | "1Z0" |
"110",
"10000000" AFTER 2 NS WHEN "ZZZ" | "ZZ1" | "Z1Z" |
"Z11" | "1ZZ" | "1Z1" | "11Z" | "111",
"XXXXXXXX" WHEN OTHERS;
END dataflow;

60
60

119

Block Statement
Block statement is a Concurrent VHDL Construct which is used
within an Architectural Body to group (Bind) a set of cConcurrent
statements

A Guard Condition may be associated with a Block Statement to
allow Enabling/Disabling of certain Signal Assignment statements.
The Guard Condition defines an Implicit Signal called GUARD.
In the simplest case, Binding (Packing !) statements within a Block
has No Effect on the model.
Blocks can be Nested.

Block_Label: Block [(Guard_Condition)] [IS]
Block Header;
Block_Declarations;

Begin
Concurrent_Statements;

END Block Block_Label ;

120

Block Statement Example

Architecture DF of D_Latch is
Begin

B : Block (Clk = `1`)
Signal I_State :Bit; Block Local Signal
Begin

I_State <= Guarded D ;
Q <= I_State after 5 ns;
QB <= not I_State after 5 ns;

END Block B ;
END DF ;

• UnGuarded Signal Targets (e.g., Q, QB) are
independent of the Guard Condition

• If Guard Condition
(Clk=`1`) is TRUE,
Guarded Statements
within block are
Enabled (Made Active)

• Guarded Statements
(e.g., I_State) execute
when
– Guard Condition

Becomes True,
AND

– While Guard
Condition is True,
a Signal on the
RHS Changes
Value

61
61

121

Positive-Edge-Triggered DFF …

Library IEEE;
Use IEEE.Std_Logic_1164.ALL;
Entity DFF is

Generic(TDel: Time:= 5 NS);
Port(D, Clk: in Std_Logic; Q, QB: out Std_Logic);

End DFF;

•We will show several dataflow architectures with and
without Block statement.
•Will show why some of these architectures do not
work.

122

… Positive-Edge-Triggered DFF …

Clk='1' and Clk'Event

CLK

Signal Evaluated here

(Clk='1' and Clk'Event)

= TRUE

Signal Evaluated here

(Clk='1' and Clk'Event)

= FALSE

Arch 1
Architecture DF1_NO_Block of DFF is
Signal I_State: Std_Logic:='1';
begin

I_State <= D when (Clk='1' and
Clk'Event) else I_state;

Q <= I_state after TDel ;

QB <= not I_state after TDel ;
End DF1_NO_Block ;

Works

Signal Evaluated
2-Times Per
Clock Cycle

62
62

123

… Positive-Edge-Triggered DFF …

Arch 2
Architecture
DF2_NO_Block of DFF is
Signal I_State:
Std_Logic:='1';
begin
I_State <= D after TDel
when (Clk='1' and
(not(Clk'Stable))) else
I_state;
Q <= I_state;
QB <= not I_state;
End DF2_NO_Block ;

Doesn’t Work

Signal Evaluated 4-Times Per
Clock Cycle

Clk='1' and Not Clk‘Stable

CLK

Signal Evaluated
here

(Clk='1' and not
Clk‘Stable)=
TRUE

Signal Evaluated here

(Clk='1' and not
Clk‘Stable)=
FALSE

Not
Clk‘Stable

δ δ

124

… Positive-Edge-Triggered DFF …

Arch 3
Architecture DF3_NO_Block of DFF
is
Signal I_State: Std_Logic:='1';
begin

I_State <= D when (Clk='1' and
(not(Clk'Stable))) else I_state;
Q <= I_state after TDel;
QB <= not I_state after TDel ;

End DF3_NO_Block ;

Works

I_State gets the value
of D after 1 delta and
Its value does not get
overwritten

63
63

125

… Positive-Edge-Triggered DFF …

Arch4
Architecture DF1_Block of DFF is
Signal I_State: Std_Logic:='1';
begin
D_Blk: Block(Clk='1' and Clk'Event)

Begin
Q <= Guarded D after Tdel;
QB <= Guarded not D after Tdel;

End Block;
End DF1_Block ;

Doesn’t Work

GUARD <= Clk='1' and Clk'Event

TRUE FALSE

Signal Evaluated
Continuously while
Clk = ‘1’ !!!

126

Positive-Edge-Triggered DFF …
Arch5
Architecture DF2_Block of DFF is
Signal I_State: Std_Logic:='1';
begin
D_Blk: Block(Clk='1' and not Clk'Stable)

Begin
Q <= Guarded D after Tdel;

QB <= Guarded not D after Tdel;

End Block;
End DF2_Block ;

Works

GUARD <= Clk='1' and not Clk‘Stable

TRUE FALSEδ

Signal Evaluated
Once Per Clock Cycle

(At Rising Edge of the
Clock)

64
64

127

Use of Nested Blocks For Composite
Enabling Conditions

ARCHITECTURE guarding OF DFF IS
BEGIN
edge: BLOCK (c = '1' AND NOT c'STABLE)
BEGIN

gate: BLOCK (e = '1' AND GUARD)
BEGIN
q <= GUARDED d AFTER delay1;
qb <= GUARDED NOT d AFTER delay2;
END BLOCK gate;

END BLOCK edge;
END guarding;

•Inner Guard Signal <= (e= '1') AND (c= '1' AND NOT c'STABLE)
•Can nest block statements
•Combining guard expressions must be done explicitly
• Implicit GUARD signals in each block

128

Data Flow Example …

Model A System with 2 8-Bit Registers R1 and R2, a 2-Bit
Command signal “COM” and an external 8-Bit Input “INP”

•When Com= “00” R1 is Loaded with External Input
•When Com= “01” R2 is Loaded with External Input
•When Com= “10” R1 is Loaded with R1+R2
•When Com= “11” R1 is Loaded with R1-R2

Use Work.Utils_Pkg.ALL
Entity DF_Ex is

Port (Clk: IN Bit; Com: IN Bit_Vector (1 DownTo
0); INP: IN Bit_Vector(7 DownTo 0));

End DF_Ex;

65
65

129

… Data Flow Example …

Architecture DF of DF_Ex is
Signal Mux_R1, R1, R2, R2C, R2TC, Mux_Add,

Sum: Bit_Vector(7 DownTo 0);
Signal D00, D01, D10, D11, LD_R1: Bit;
Begin

D00 <= not Com(0) and not Com(1); -- Decoder
D01 <= not Com(0) and Com(1); -- Decoder
D10 <= Com(0) and not Com(1); -- Decoder
D11 <= Com(0) and Com(1); -- Decoder
R2C <= not R2;
R2TC <= INC(R2C); -- Increment Function Defined in the Package
Mux_Add <=R2TC when D11 = ‘1’ Else R2 ;

130

… Data Flow Example

Sum <= ADD(R1, Mux_Add); -- ADD Function-- Defined in Package
Mux_R1 <= INP when D00 = ‘1’ Else Sum;
R1E <= D00 OR D10 OR D11;
Rising Edge: BLOCK(Clk=‘1’ and not Clk’Stable)

R1_Reg: BLOCK(R1E=‘1’ AND GUARD)
R1 <= Guarded Mux_R1 ;

End Block R1_Reg ;

R2_Reg: BLOCK(D01=‘1’ AND GUARD)

R2 <= Guarded INP ;
End Block R2_Reg ;

End Block Rising Edge;

End DF;

66
66

131

Concurrent Versus Sequential
Statements
Sequential Statements

•Used Within Process Bodies or
SubPrograms
•Order Dependent
•Executed When Control is Transferred to
the Sequential Body

–Assert
–Signal Assignment
–Procedure Call
–Variable Assignment
–IF Statements
–Case Statement
–Loops
–Wait, Null, Next, Exit, Return

Concurrent Statements

•Used Within Architectural Bodies or
Blocks
•Order Independent
•Executed Once At the Beginning of
Simulation or Upon Some Triggered
Event

–Assert
–Signal Assignment
–Procedure Call (None of Formal
Parameters May be of Type
Variable)
–Process
–Block Statement
–Component Statement
–Generate Statement
–Instantiation Statement

132

Process Statement …

Main construct for Behavioral Modeling.
Other concurrent statements can be modeled by an
equivalent process.
Process statement is a Concurrent construct which
performs a set of consecutive (Sequential) actions
once it is activated. Thus, only sequential statements
are allowed within the Process Body.

Process_Label: PROCESS (Sensitivity_List)
Process_Declarations;

Begin
Sequential Statements;

END Process;

Optional Optional

Constant/Varia
bles No Signal
Declarations
Allowed

67
67

133

… Process Statement …

Unless sequential part is suspended
• It executes in zero real and delta time
• It repeats itself forever

134

… Process Statement

Whenever a SIGNAL in the Sensitivity_List of the Process
changes, the Process is ACTIVATED.
After executing the last statement, the Process is SUSPENDED
until one (or more) signal in the Process Sensitivity_List changes
value where it will be REACTIVATED.
A Process statement Without a Sensitivity_List is ALWAYS
ACTIVE, i.e. after the last statement is executed, execution returns
to the first statement and continues (Infinite Looping).
It is ILLEGAL to Use WAIT-Statement Inside a Process which has
a Sensitivity_List .
In case no Sensitivity_List exists, a Process may be activated or
suspended using the WAIT-Statement.
Conditional and selective signal assignments are strictly
concurrent and cannot be used in a process.

68
68

135

Process Examples

Process
Begin

A<= `1`;
B <= `0`;

End Process;

Sequential Processing:
•First A is Scheduled to have a value `1`
•Second B is Scheduled to have a value `0`
•A & B get their new values at the SAME
TIME (1 Delta Time Later)

Process
Begin

A<= `1`;
IF (A= `1`) Then Action1;
Else Action2;
End IF;

End Process;

Assuming a `0` Initial Value of A,
•First A is Scheduled to Have a Value `1`
One Delta Time Later
•Thus, Upon Execution of IF_Statement,
A Has a Value of `0` and Action 2 will
be Taken.
•If A was Declared as a Process
Variable, Action1 Would Have Been
Taken.

136

Wait Statement
Syntax of Wait Statement
• WAIT; -- Forever
• WAIT ON Signal_List; -- On event on a signal
• WAIT UNTIL Condition; -- until event makes condition true;
• WAIT FOR Time_Out_Expression;
• WAIT FOR 0 any_time_unit; -- Process Suspended for 1 delta

When a WAIT-Statement is executed, the process suspends and
conditions for its Reactivation are set.
Process Reactivation conditions may be Mixed as follows
• WAIT ON Signal_List UNTIL Condition FOR Time_Expression ;
• wait on X,Y until (Z = 0) for 70 NS; -- Process Resumes

After 70 NS OR (in Case X or Y Changes Value and Z=0 is
True) Whichever Occurs First

• Process Reactivated IF:
• Event Occurred on the Signal_List while the Condition is True, OR
• Wait Period Exceeds ``Time_Expression ``

69
69

137

Positive Edge-Triggered D-FF Examples

D_FF: PROCESS (CLK)
Begin

IF (CLK`Event and CLK = `1`) Then
Q <= D After TDelay;

END IF;
END Process;

D_FF: PROCESS -- No Sensitivity_List
Begin

WAIT UNTIL CLK = `1`;
Q <= D After TDelay;

END Process;

D_FF: PROCESS (Clk, Clr) -- FF With Asynchronous Clear
Begin

IF Clr= `1` Then Q <= `0` After TD0;
ELSIF (CLK`Event and CLK = `1`) Then Q <= D After TD1;
END IF;

END Process;

138

Sequential Statements

CONTROL STATEMENTS

Conditional

• IF statements

• CASE statement

Iterative

• Simple Loop

• For Loop

•While Loop

70
70

139

Conditional Control – IF Statement
Syntax: 3-Possible Forms
(i) IF condition Then

statements;
End IF;

(ii) IF condition Then
statements;

Else
statements;

End IF;
(iii) IF condition Then

statements;
Elsif condition Then

statements;
……….

Elsif condition Then
statements;

End IF;

140

Conditional Control – Case Statement

Syntax:
(i) CASE Expression is

when value => statements;
when value1 | value2| ...|valuen => statements;
when discrete range of values => statements;
when others => statements;

End CASE;

Values/Choices should not overlap (Any value of the
Expression should evaluate to only one arm of the case
statement).
All possible choices for the Expression should be
accounted for Exactly Once.

71
71

141

Conditional Control – Case Statement

If ``others`` is used, It must be the last ``arm`` of the CASE
statement.
There can be any number of arms in Any Order (Except for
the others arm which should be Last).

CASE x is
when 1 => y :=0;
when 2 | 3 => y :=1;
when 4 to 7 => y :=2;
when others => y :=3;

End CASE;

142

Loop Control …

Simple Loops
Syntax:

[Loop_Label:] LOOP
statements;

End LOOP [Loop_Label];
The Loop_Label is Optional.
The exit statement may be used to exit the Loop. It has
two possible Forms:
• exit [Loop_Label]; -- This may be used in an if statement
• exit [Loop_Label] when condition;

72
72

143

…Loop Control
Process

variable A : Integer :=0;
variable B : Integer :=1;

Begin
Loop1: LOOP

A := A + 1;
B := 20;
Loop2: LOOP

IF B < (A * A) Then
exit Loop2;

End IF;
B := B - A;
End LOOP Loop2;

exit Loop1 when A > 10;
End LOOP Loop1;

End Process;

144

FOR Loop

Syntax:
[Loop_Label]: FOR Loop_Variable in range LOOP

statements;
End LOOP Loop_Label;

Process
variable B : Integer :=1;

Begin
Loop1: FOR A in 1 TO 10 LOOP

B := 20;
Loop2: LOOP

IF B < (A * A) Then
exit Loop2;

End IF;
B := B - A;

End LOOP Loop2;
End LOOP Loop1;

End Process;

Need Not Be Declared

73
73

145

WHILE Loop

Syntax:
[Loop_Label]: WHILE condition LOOP

statements;
End LOOP Loop_Label;

Process
variable B:Integer :=1;

Begin
Loop1: FOR A in 1 TO 10 LOOP

B := 20;
Loop2: WHILE B < (A * A) LOOP

B := B - A;
End LOOP Loop2;

End LOOP Loop1;
End Process;

146

A Moore 1011 Detector using Wait

ENTITY moore_detector IS
PORT (x, clk : IN BIT;
z : OUT BIT);
END moore_detector;

•Can use WAIT in a Process
statement to check for events
on clk.

ARCHITECTURE behavioral_state_machine OF moore_detector IS
TYPE state IS (reset, got1, got10, got101, got1011);
SIGNAL current : state := reset;
BEGIN

74
74

147

A Moore 1011 Detector using Wait
PROCESS
BEGIN
CASE current IS
WHEN reset => WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got1; ELSE current <= reset; END IF;
WHEN got1 => WAIT UNTIL clk = '1';

IF x = '0' THEN current <= got10; ELSE current <= got1; END IF;
WHEN got10 => WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got101; ELSE current <= reset; END IF;
WHEN got101 => WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got1011; ELSE current <= got10; END IF;
WHEN got1011 => z <= '1'; WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got1; ELSE current <= got10; END IF;
END CASE;
WAIT FOR 1 NS; z <= '0';
END PROCESS;
END behavioral_state_machine;

148

A Moore 1011 Detector without Wait
ARCHITECTURE most_behavioral_state_machine OF moore_detector IS
TYPE state IS (reset, got1, got10, got101, got1011);
SIGNAL current : state := reset;
BEGIN
PROCESS (clk)
BEGIN
IF (clk = '1' and CLK’Event) THEN
CASE current IS
WHEN reset =>

IF x = '1' THEN current <= got1; ELSE current <= reset; END IF;
WHEN got1 =>

IF x = '0' THEN current <= got10; ELSE current <= got1; END IF;
WHEN got10 =>

IF x = '1' THEN current <= got101; ELSE current <= reset; END IF;
WHEN got101 =>

IF x = '1' THEN current <= got1011; ELSE current <= got10; END IF;
WHEN got1011 =>

IF x = '1' THEN current <= got1; ELSE current <= got10; END IF;
END CASE;
END IF;
END PROCESS;
z <= '1' WHEN current = got1011 ELSE '0';
END most_behavioral_state_machine;

75
75

149

Generalized VHDL Mealy Model
Architecture Mealy of fsm is

Signal D, Y: Std_Logic_Vector(...); -- Local Signals
Begin
Register: Process(Clk)

Begin
IF (Clk`EVENT and Clk = `1`) Then Y <= D;
End IF;

End Process;
Transitions: Process(X, Y)

Begin
D <= F1(X, Y);

End Process;
Output: Process(X, Y)

Begin
Z <= F2(X, Y);

End Process;
End Mealy;

X
F2

F1

Z

Register

Y

D

150

Generalized VHDL Moore Model

Architecture Moore of fsm is
Signal D, Y: Std_Logic_Vector(...); -- Local Signals

Begin
Register: Process(Clk)

Begin
IF (Clk`EVENT and Clk = `1`) Then Y <= D;
End IF;

End Process;
Transitions: Process(X, Y)

Begin
D <= F1(X, Y);

End Process;
Output: Process(Y)

Begin
Z <= F2(Y);

End Process;
End Moore;

X

F2

F1

Z

Register
Y D

76
76

151

FSM Example …

Entity fsm is
port (Clk, Reset : in Std_Logic;

X : in Std_Logic_Vector(0 to 1);
Z : out Std_Logic_Vector(1 downto 0));

End fsm;

Architecture behavior of fsm is
Type States is (st0, st1, st2, st3);
Signal Present_State, Next_State : States;

Begin
register: Process(Reset, Clk)
Begin

IF Reset = `1` Then
Present_State <= st0; -- Machine Reset to st0

elsIF (Clk`EVENT and Clk = `1`) Then
Present_State <= Next_state;

End IF;
End Process;

152

… FSM Example

Transitions: Process(Present_State, X)
Begin

CASE Present_State is
when st0 =>

Z <= ``00``;
IF X = ``11`` Then Next_State <= st0;
else Next_State <= st1; End IF;

when st1 =>
Z <= ``01``;
IF X = ``11`` Then Next_State <= st0;
else Next_State <= st2; End IF;

when st2 =>
Z <= ``10``;
IF X = ``11`` Then Next_State <= st2;
else Next_State <= st3; End IF;

when st3 =>
Z <= ``11``;
IF X = ``11`` Then Next_State <= st3;
else Next_State <= st0; End IF;

End CASE;
End Process;

End behavior;

77
77

153

Using Wait for Two-Phase Clocking

c1 <= not c1 after 500ns;
phase2: PROCESS
BEGIN
WAIT UNTIL c1 = '0';
WAIT FOR 10 NS;
c2 <= '1';
WAIT FOR 480 NS;
c2 <= '0';
END PROCESS phase2;
. . .

