
COE 405
Dataflow Descriptions in VHDL

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

9-2

Outline

Constructs for Dataflow Descriptions
Selection Constructs
Multiplexing and Clocking
Block Statement & Nested Blocks
Guarded Constructs
Multiple Assignments
Resolution Function
Resolution of Guarded Signals
State Machines
Complete Dataflow Examples

9-3

DATA FLOW MODEL

Represents Register Transfer operations
There is Direct Mapping between Data Flow Statements
&& Register Structural Model
• Implied Module Connectivity
• Implied Muxes & Buses

Main Data Flow VHDL Constructs:
• Concurrent Signal Assignment Statements
• Block Statement

9-4

Signal Assignment …

Unconditional: Both Sequential & Concurrent
Conditional: Only Concurrent; Conditions Must Be
Boolean, May Overlap and Need Not Be Exhaustive
Selected: Only Concurrent; Cases Must Not Overlap
and Must Be Exhaustive
Conditional Signal Assignment

[Label:] target <= [Guarded] [Transport]
Wave1 when Cond1 Else
Wave2 when Cond2 Else
……………………………..
Waven-1 when Condn-1 Else
Waven ; -- Mandatory Wave

9-5

… Signal Assignment

Selected Signal Assignment

With Expression Select
target <= [Guarded] [Transport]

Wave1 when Choice1 ,
Wave2 when Choice2 ,
……………………………
Waven-1 when Choicen-1 ,
Waven when OTHERS ;

VHDL-93: Any Wavei Can Be Replaced By the Keyword
UNAFFECTED (Which Doesn’t Schedule Any Transactions on
the Target Signal.)

9-6

Signal Assignment Examples
Example: A 2x4 Decoder
Signal D : Bit_Vector(1 To 4) := “0000”;
Signal S0, S1 : Bit;
…………………………………………
Decoder: D <= “0001” after T When S1=‘0’ and S0=‘0’ else

“0010” after T When S1=‘0’ else
“0100” after T When S0=‘0’ else “1000” ;

Example: 4-Phase Clock Generator
Signal Phi4 : Bit_Vector(1 To 4) := “0000”;
…………………………………………
ClkGen: With Phi4 Select

Phi4 <= “1000” after T When “0000” ,
“0100” after T When “1000” ,
“0010” after T When “0100” ,

“0001” after T When “0010” ,
“1000” after T When “0001” ,
“0000” When Others ; -- Exhaustive

9-7

Multiplexing …

Multiplexers are used for data selection

9-8

… Multiplexing
USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: qit, qit_vector
ENTITY mux_8_to_1 IS
PORT (i7, i6, i5, i4, i3, i2, i1, i0 : IN qit;
s7, s6, s5, s4, s3, s2, s1, s0 : IN qit; z : OUT qit);
END mux_8_to_1;
--
ARCHITECTURE dataflow OF mux_8_to_1 IS
SIGNAL sel_lines : qit_vector (7 DOWNTO 0);
BEGIN
sel_lines <= s7&s6&s5&s4&s3&s2&s1&s0;
WITH sel_lines SELECT
z <= '0' AFTER 3 NS WHEN "00000000",
i7 AFTER 3 NS WHEN "10000000" | "Z0000000",
i6 AFTER 3 NS WHEN "01000000" | "0Z000000",
i5 AFTER 3 NS WHEN "00100000" | "00Z00000",
i4 AFTER 3 NS WHEN "00010000" | "000Z0000",
i3 AFTER 3 NS WHEN "00001000" | "0000Z000",
i2 AFTER 3 NS WHEN "00000100" | "00000Z00",
i1 AFTER 3 NS WHEN "00000010" | "000000Z0",
i0 AFTER 3 NS WHEN "00000001" | "0000000Z",
'X' WHEN OTHERS;
END dataflow;

9-9

3-to-8 Decoder
USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE : qit_vector
ENTITY dcd_3_to_8 IS
PORT (adr : IN qit_vector (2 DOWNTO 0);
so : OUT qit_vector (7 DOWNTO 0));
END dcd_3_to_8;
--
ARCHITECTURE dataflow OF dcd_3_to_8 IS
BEGIN
WITH adr SELECT
so <= "00000001" AFTER 2 NS WHEN "000",
"00000010" AFTER 2 NS WHEN "00Z" | "001",
"00000100" AFTER 2 NS WHEN "0Z0" | "010",
"00001000" AFTER 2 NS WHEN "0ZZ" | "0Z1" | "01Z" |
"011",
"00010000" AFTER 2 NS WHEN "100" | "Z00",
"00100000" AFTER 2 NS WHEN "Z0Z" | "Z01" | "10Z" |
"101",
"01000000" AFTER 2 NS WHEN "ZZ0" | "Z10" | "1Z0" |
"110",
"10000000" AFTER 2 NS WHEN "ZZZ" | "ZZ1" | "Z1Z" |
"Z11" | "1ZZ" | "1Z1" | "11Z" | "111",
"XXXXXXXX" WHEN OTHERS;
END dataflow;

9-10

Clocking …

Flip flop clocking selects data
Various forms of data selection may be combined

9-11

… Clocking …
ENTITY d_flipflop IS
GENERIC (delay1 : TIME := 4 NS; delay2 : TIME := 5 NS);
PORT (d, c : IN BIT; q, qb : OUT BIT);
END d_flipflop;
--
ARCHITECTURE assigning OF d_flipflop IS
SIGNAL internal_state : BIT;
BEGIN
internal_state <= d WHEN (c = '1' AND NOT c'STABLE)
ELSE internal_state;
q <= internal_state AFTER delay1;
qb <= NOT internal_state AFTER delay2;
END assigning;

•A simple flipflop uses internal_state
•On clock edge d is transferred to internal_state
•Events on internal_state cause assignments to q and qb

•Two transactions on internal_state for every clock edge

9-12

Clocking …
ENTITY d_flipflop IS
GENERIC (delay1 : TIME := 4 NS; delay2 : TIME := 5 NS);
PORT (d, c : IN BIT; q, qb : OUT BIT);
END d_flipflop;
--
ARCHITECTURE guarding OF d_flipflop IS

BEGIN
ff: BLOCK (c = '1' AND NOT c'STABLE)
BEGIN

q <= GUARDED d AFTER delay1;
qb <= GUARDED NOT d AFTER delay2;

END BLOCK ff;
END guarding;

•Better representation of clocking disconnects d from q
•Disconnection is specified by GUARDED
•GUARDED assignments are guarded by guard expression

•Guard expression is only TRUE for 1 delta
•Can also guard selected and conditional signal assignments

9-13

Block Statement
Block Statement is a Concurrent VHDL Construct Which is Used
Within an Architectural Body to Group (Bind) a Set of Concurrent
Statements

A Guard Condition May be Associated with a Block Statement to
Allow Enabling/Disabling of Certain Signal Assignment
Statements.
The Guard Condition Defines an Implicit Signal Called GUARD.
In the Simplest Case, Binding (Packing !) Statements Within A
Block Has No Effect On the Model.
Blocks Can Be Nested.

Block_Label: Block [(Guard_Condition)] [IS]
Block Header;
Block_Declarations;

Begin
Concurrent_Statements;

END Block Block_Label ;

9-14

Block Statement Example

Architecture DF of D_Latch is
Begin

B : Block (Clk = `1`)
Signal I_State :Bit; Block Local Signal
Begin

I_State <= Guarded D ;
Q <= I_State after 5 ns;
QB <= not I_State after 5 ns;

END Block B ;
END DF ;

• UnGuarded Signal Targets (e.g., Q, QB) are
independent of the Guard Condition

• If Guard Condition
(Clk=`1`) is TRUE,
Guarded Statements
within block are
Enabled (Made Active)

• Guarded Statements
(e.g., I_State) execute
when
– Guard Condition

Becomes True,
AND

– While Guard
Condition is True,
a Signal on the
RHS Changes
Value

9-15

Positive-Edge-Triggered DFF …

Library IEEE;
Use IEEE.Std_Logic_1164.ALL;
Entity DFF is

Generic(TDel: Time:= 5 NS);
Port(D, Clk: in Std_Logic; Q, QB: out Std_Logic);

End DFF;

•We will show several dataflow architectures with and
without Block statement
•Will show why some of these architectures do not
work

9-16

… Positive-Edge-Triggered DFF …

Clk='1' and Clk'Event

CLK

Signal Evaluated here

(Clk='1' and Clk'Event)

= TRUE

Signal Evaluated here

(Clk='1' and Clk'Event)

= FALSE

Arch 1
Architecture DF1_NO_Block of DFF is
Signal I_State: Std_Logic:='1';
Begin

I_State <= D when (Clk='1' and
Clk'Event) else I_state;

Q <= I_state after TDel ;

QB <= not I_state after TDel ;
End DF1_NO_Block ;

Works

Signal Evaluated
2-Times Per
Clock Cycle

9-17

… Positive-Edge-Triggered DFF …

Arch 2
Architecture
DF2_NO_Block of DFF is
Signal I_State:
Std_Logic:='1';
Begin
I_State <= D after TDel
when (Clk='1' and
(not(Clk'Stable))) else
I_state;

Q <= I_state;
QB <= not

I_state;
End DF2_NO_Block ;

Doesn’t Work

Signal Evaluated 4-Times Per
Clock Cycle

Clk='1' and Not Clk‘Stable

CLK

Signal Evaluated
here

(Clk='1' and not
Clk‘Stable)=
TRUE

Signal Evaluated here

(Clk='1' and not
Clk‘Stable)=
FALSE

Clk‘Stable

δ δ

9-18

… Positive-Edge-Triggered DFF …

Arch 3
Architecture DF3_NO_Block of DFF
is
Signal I_State: Std_Logic:='1';
Begin

I_State <= D when
(Clk='1' and (not(Clk'Stable)))
else I_state;

Q <= I_state after TDel;
QB <= not I_state after

TDel ;
End DF3_NO_Block ;

Works

I_State gets the value
of D after 1 delta and
Its value does not get
overwritten

9-19

… Positive-Edge-Triggered DFF …

Arch4
Architecture DF1_Block of DFF is
Signal I_State: Std_Logic:='1';
Begin
D_Blk: Block(Clk='1' and Clk'Event)

Begin
Q <= Guarded D after Tdel;
QB <= Guarded not D after Tdel;

End Block;
End DF1_Block ;

Doesn’t Work

GUARD <= Clk='1' and Clk'Event

TRUE FALSE

Signal Evaluated
Continuously while
Clk = ‘1’ !!!

9-20

Positive-Edge-Triggered DFF …
Arch5
Architecture DF2_Block of DFF is
Signal I_State: Std_Logic:='1';
Begin
D_Blk: Block(Clk='1' and not Clk'Stable)

Begin
Q <= Guarded D after Tdel;

QB <= Guarded not D after Tdel;

End Block;
End DF2_Block ;

Works

GUARD <= Clk='1' and not Clk‘Stable

TRUE FALSEδ

Signal Evaluated
Once Per Clock Cycle

(At Rising Edge of the
Clock)

9-21

Nested Block Statements
Architecture Block_Structure of Demo is
begin

A: Block -- 1
Outer Block Declarative Section;

Begin
Concurrent Statements of Outer Block;

B:Block -- 1.1
Inner Block ``A`` Declarative Section;

begin
Concurrent Statements of Inner Block ``A``;

..................................
end Block B;

C:Block -- 1.2
Inner Block ``B`` Declarative Section;

begin
Concurrent Statements of Inner Block ``B``;

..................................
end Block C;

end Block A;

D: Block -- 2
..................................

end Block D;
end Block_Structure;

9-22

Use of Nested Blocks For Composite
Enabling Conditions

ARCHITECTURE guarding OF DFF IS
BEGIN
edge: BLOCK (c = '1' AND NOT c'STABLE)
BEGIN

gate: BLOCK (e = '1' AND GUARD)
BEGIN
q <= GUARDED d AFTER delay1;
qb <= GUARDED NOT d AFTER delay2;
END BLOCK gate;

END BLOCK edge;
END guarding;

•Inner Guard Signal <= (e= '1') AND (c= '1' AND NOT c'STABLE)
•Can nest block statements
•Combining guard expressions must be done explicitly
• Implicit GUARD signals in each block

9-23

Data Flow Example …

Model A System with 2 8-Bit Registers R1 and R2, a 2-Bit
Command signal “COM” and an external 8-Bit Input “INP”

•When Com= “00” R1 is Loaded with External Input
•When Com= “01” R2 is Loaded with External Input
•When Com= “10” R1 is Loaded with R1+R2
•When Com= “11” R1 is Loaded with R1-R2

Use Work.Utils_Pkg.ALL
Entity DF_Ex is

Port (Clk: IN Bit; Com: IN Bit_Vector (1 DownTo
0); INP: IN Bit_Vector(7 DownTo 0)
R1, R2: BUFFER Bit_Vector(7 DownTo 0));

End DF_Ex;

9-24

… Data Flow Example …
Architecture DF of DF_Ex is
Signal Mux_R1, R1, R2, R2C, R2TC, Mux_Add,

Sum: Bit_Vector(7 DownTo 0);
Signal D00, D01, D10, D11, R1E: Bit;
Begin

D00 <= not Com(0) and not Com(1); -- Decoder
D01 <= not Com(0) and Com(1); -- Decoder
D10 <= Com(0) and not Com(1); -- Decoder
D11 <= Com(0) and Com(1); -- Decoder
R2C <= not R2;
R2TC <= INC(R2C); -- Increment Function Defined in the Package
Mux_Add <=R2TC when D11 = ‘1’ Else R2 ;

9-25

… Data Flow Example

Sum <= ADD(R1, Mux_Add); -- ADD Function-- Defined in Package
Mux_R1 <= INP when D00 = ‘1’ Else Sum;
R1E <= D00 OR D10 OR D11;
Rising_Edge: BLOCK(Clk=‘1’ and not Clk’Stable) Begin

R1_Reg: BLOCK(R1E=‘1’ AND GUARD) Begin
R1 <= Guarded Mux_R1 ;

End Block R1_Reg ;

R2_Reg: BLOCK(D01=‘1’ AND GUARD) Begin

R2 <= Guarded INP ;
End Block R2_Reg ;

End Block Rising_Edge;

End DF;

9-26

Signal Resolution Function …
Each signal assignment statement defines a Signal Driver
(Source)
Example:
• S <= a After T ;

Multiple Concurrent Assignment Statements to the Same Signal defines
Multiple Drivers (Signal Sources).
Such Multi-Driver Signals are commonly
encountered in Buses with Multiple Drivers
Electrically, Tri-State or Open-Collector
Drivers are used to Resolve Conflicts
of the Different Drivers
VHDL Model requires the definition of
a Resolution Function to Resolve values
being assigned to the Common Signal by all its Drivers

a S
Driver

 a1

 a2

 an

Resolution
Function

 S

9-27

… Signal Resolution Function …

9-28

… Signal Resolution Function

9-29

“ANDING” Signal Resolution Function

-- FROM basic_utilities USE qit, qit_vector, "AND"
FUNCTION anding (drivers : qit_vector) RETURN qit IS
VARIABLE accumulate : qit := '1';
BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate AND drivers(i);
END LOOP;
RETURN accumulate;
END anding;

9-30

“ANDING” Signal Resolution Function
USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: qit
ARCHITECTURE wired_and OF y_circuit IS
FUNCTION anding (drivers : qit_vector)
RETURN qit IS
VARIABLE accumulate : qit := '1';
BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate AND drivers(i);
END LOOP;
RETURN accumulate;
END anding;
SIGNAL circuit_node : anding qit;
BEGIN
circuit_node <= a;
circuit_node <= b;
circuit_node <= c;
circuit_node <= d;
z <= circuit_node;
END wired_and;

9-31

“ORING” Signal Resolution Function

FUNCTION oring (drivers : qit_vector) RETURN qit IS
VARIABLE accumulate : qit := '0';
BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate OR drivers(i);
END LOOP;
RETURN accumulate;
END oring;

SUBTYPE ored_qit IS oring qit;
. . .
-- The following declarations are equivalent
SIGNAL t : ored_qit;
SIGNAL t : oring qit;

9-32

Multiplexer uses implicit ORing

ARCHITECTURE multiple_assignments OF mux_8_to_1 IS
SIGNAL t : ored_qit;
BEGIN
t <= i7 AND s7;
t <= i6 AND s6;
t <= i5 AND s5;
t <= i4 AND s4;
t <= i3 AND s3;
t <= i2 AND s2;
t <= i1 AND s1;
t <= i0 AND s0;
z <= t;
END multiple_assignments;

•Multiplexer uses implicit ORing on t
•AND_OR logic is realized

9-33

Resolution of Non-Guarded Signals

• Resolved Non-Guarded LHS Signal Values Are Determined by The
Resolution Function from CVs of all Driver Signals on the RHS

• Expired Transactions on Any of the Signal Drivers, Activates the RF to
Determine the new value of the output signal

• Pending Transactions on the PWFM of the Signal Continue to Affect the
Signal Value (Through RF) as they Expire.

T1

V1

T2

V2

….

….

T3

V3
0

Driving Value

T1

V1

T2

V2

….

….

T3

V3
0

RF

Driver 1

Driver n

9-34

Resolution of Guarded Signals
(GUARD = False) LHS Signal is Disconnected from its Driver
Signals on the RHS

No New Transactions May Be Placed on the LHS Signal Driver
Pending Transactions on the PWFM of the Signal Continue to
Affect the Signal Value as they Expire.

T1

V1

T2

V2

….

….

T3

V3
0

Guard

RHS

Driving Value

Projected Waveform

9-35

Resolution of Guarded Signals
• A Resolved Guarded Signal is Declared to Be of either REGISTER kind or

BUS Kind.

• Only Drivers with (GUARD = True) Participate in Determining Value of
Target Signal

• If a Driver has (GUARD = False)

It is Considered Turned-Off
• Register Signals drivers DO NOT

Invoke the RF in Case All Drivers
Are Turned Off Signal
Retains its Previous Value.

• Signals of BUS Kind Invoke the RF
in case All Signal Drivers Are

Turned Off RF is Invoked with
a NULL input
Default Value is Returned.

T1

V1

T2

V2

….

….

T3

V3
0

Guard

RHS

Driving Value

T1

V1

T2

V2

….

….

T3

V3
0

Guard

RHS RF

Driver 1

Driver n

9-36

Resolution of Guarded Signals

Events and Transactions on Signals of BUS & Register
kind are exactly the same as long as at least One
Driver is ON.
When all Drivers are OFF, Register signals will
maintain their Previous Values while BUS signals will
assume the Default Value of the RF.

Driving

ValueT1

V1

T2

V2

….

….

T3

V3
0

Guard
Expression

RHS

Projected Waveform

RF

9-37

Types of Resolved Signals

9-38

Syntax
Signal <sig_name> : <resolved sig_subtype> [Signal_kind] [:=Initial_Value] ;

Signal_kind ::= BUS | Register

Examples:

Signal x : Wired_MVL4 BUS ;

Signal y : Wired_MVL4 Register ;

Note:

1. Only Signals of Kind BUS May be Specified for

as Port Signals

2. Signals of Register Kind May NOT be Specified

as Port Signals)

Entity ex is

Port(s1, s2 : in MVL4; Z: out wired_MVL4 BUS) ;

End ex;

9-39

Example MOS (PTL)
Multiplexer …

9-40

… Example MOS (PTL)
Multiplexer …
FUNCTION wire (a, b : qit) RETURN qit IS
CONSTANT qit_and_table : qit_2d := (

('0','X','0','X'),
('X','1','1','X'),
('0','1','Z','X'),
('X','X','X','X'));

BEGIN
RETURN qit_and_table (a, b);

END wire;

9-41

… Example MOS (PTL)
Multiplexer …
FUNCTION wiring (drivers : qit_vector) Return qit IS

Variable accumulate : qit := 'Z'; -- Default

BEGIN

FOR i IN drivers'RANGE LOOP

accumulate := wire (accumulate, drivers(i));

END LOOP;

RETURN accumulate;

END wiring;

SUBTYPE wired_qit IS wiring qit;

TYPE wired_qit_vector IS Array (Natural Range <>) OF wired_qit;

9-42

… Example MOS (PTL)
Multiplexer …

USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: wired_qit

Architecture multiple_guarded_assignments OF mux_8_to_1 IS
SIGNAL t : Wired_qit BUS;
BEGIN
b7: Block (s7 = '1' OR s7 = 'Z') Begin t <= Guarded i7; End Block;
b6: Block (s6 = '1' OR s6 = 'Z') Begin t <= Guarded i6; End Block ;
b5: Block (s5 = '1' OR s5 = 'Z') Begin t <= Guarded i5; End Block ;
b4: Block (s4 = '1' OR s4 = 'Z') Begin t <= Guarded i4; End Block ;
b3: Block (s3 = '1' OR s3 = 'Z') Begin t <= Guarded i3; End Block ;
b2: Block (s2 = '1' OR s2 = 'Z') Begin t <= Guarded i2; End Block ;
b1: Block (s1 = '1' OR s1 = 'Z') Begin t <= Guarded i1; End Block ;
b0: Block (s0 = '1' OR s0 = 'Z') Begin t <= Guarded i0; End Block ;
z <= not t after 1 NS;
END multiple_guarded_assignments;

Model 1 (BUS Signal Kind)

•Disconnection is
realized by block
statements
•If all drivers are
disconnected
Hardware returns to
'Z’ Modeling This
Requires Using BUS
Signal Kind.

9-43

… Example MOS (PTL)
Multiplexer

USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE: wired_qit

Architecture multiple_guarded_assignments OF mux_8_to_1 IS
SIGNAL t : Wired_qit REGISTER;
BEGIN
b7: Block (s7 = '1' OR s7 = 'Z') Begin t <= Guarded i7; End Block;
b6: Block (s6 = '1' OR s6 = 'Z') Begin t <= Guarded i6; End Block ;
b5: Block (s5 = '1' OR s5 = 'Z') Begin t <= Guarded i5; End Block ;
b4: Block (s4 = '1' OR s4 = 'Z') Begin t <= Guarded i4; End Block ;
b3: Block (s3 = '1' OR s3 = 'Z') Begin t <= Guarded i3; End Block ;
b2: Block (s2 = '1' OR s2 = 'Z') Begin t <= Guarded i2; End Block ;
b1: Block (s1 = '1' OR s1 = 'Z') Begin t <= Guarded i1; End Block ;
b0: Block (s0 = '1' OR s0 = 'Z') Begin t <= Guarded i0; End Block ;
z <= not t after 1 NS;
END multiple_guarded_assignments;

Model 2 (Register Signal Kind)

•Disconnection is
realized by block
statements
•If all drivers are
disconnected
Real hardware
Maintains State for
few milliseconds (As
Charge on the
Capacitance of Node
“t”.
•Use Register to
implement this
behavior

9-44

General Multiplexer

USE WORK.basic_utilities.ALL;
-- FROM PACKAGE USE : qit, qit_vector, wired_qit
ENTITY mux_n_to_1 IS
PORT (i, s : IN qit_vector; z : OUT wired_qit BUS);
END mux_n_to_1;
--
ARCHITECTURE multiple_guarded_assignments OF mux_n_to_1 IS
BEGIN
bi: FOR j IN i'RANGE GENERATE

bj: BLOCK (s(j) = '1' OR s(j) = 'Z')
BEGIN

z <= GUARDED i(j);
END BLOCK;

END GENERATE;
END multiple_guarded_assignments;

9-45

Disconnection Delay …

Signal assignment can specify connection delay
• If i5 changes value while guard expression is true or guard

expression changes from False to True, i5 will be assigned to
t after 4 ns.

• The 4ns delay only applies when a driver is connected and
does not apply when it is disconnected.

A disconnection specification statement can be used
to specify the disconnection delay for a guarded signal
• Disconnect t: wired_qit AFTER 6 ns;
• If a driver turns off, its effect remains on t for 6 ns after it has

been turned off.

b5: BLOCK (s5='1' OR s5='Z')
BEGIN t <= GUARDED i5 AFTER 4 NS;
END BLOCK;

9-46

… Disconnection Delay
The DISCONNECTION statement is placed in the declarative part
of the Architecture and applies to all assignments to this signal
EXAMPLE

Architecture DF of Example is
Signal X : WX_Vector (7 downTo 0) BUS ;
DISCONNECT X : WX_Vector after 50 ns ;
Begin
B1: Block (Ph1=`1`)

Signal P1_S : WX_Vector(7 downTo 0) ;
Begin

P1_S <= ….
X <= Guarded P1_S after 75 ns;

End Block B1 ;
B2: Block (Ph2=`1`)

Signal P2_S : WX_Vector(7 downTo 0) ;
Begin

P2_S <= ….
X <= Guarded P2_S after 60 ns;

End Block B2 ;
END DF ;

9-47

Disconnection of BUS Signals

75
ns

50 ns 50 ns
60 ns

P1_S

PH1

P2_S

PH2

X
75
ns

50 ns 50 ns
60 ns

P1_S

PH1

P2_S

PH2

X

9-48

Mealy Machine Example
Using Block Statements …

Architecture Mealy_Block of Mealy_Mc is
Type State is (St0, St1, St2);
Type St_Vector is array (Natural range <>) of State ;

Function State_RF (X: St_Vector) Return State is
Begin

Return X(X`Left);
End State_RF ;

Signal PS: State_RF State REGISTER := St0;

entity Mealy_Mc is
Port (Clk, X: in Bit;

Z : out Bit);
end Mealy_Mc;

X
F2

F1

Z

Register

PS

D

9-49

… Mealy Machine Example
Using Block Statements …
Begin

B1: Block(not Clk`STABLE and Clk = `1`)

begin
S0:Block((PS = St0) and Guard)

begin
PS <= Guarded St1 when X=`0` else St2;

end block S0;
S1:Block((PS = St1) and Guard)

begin
PS <= Guarded St2 when X=`0` else St0;

end block S1;
S2:Block((PS = St2) and Guard)

begin
PS <= Guarded St1 when X=`1` else St2;

end block S2;
End Block B1;
Z <= `1` when PS =St1 and X=`0` else `0` when PS =St1 and X=`1` else

`0` when PS =St2 and X=`0` else `1` when PS =St2 and X=`1` else `0` ;
End Mealy_Block;

9-50

… Mealy Machine Example
Using Block Statements

Since there are 3 concurrent signal assignments to the signal PS ,
it is declared as a Resolved Signal with the RF being State_RF.
Signal PS is also declared to be of REGISTER kind. This Means
that the signal is Guarded and Resolved and that the RF is not
invoked in case all its Drivers are Turned Off (e.g. when CLK = ‘0’)
in which case the signal retains its Previous Value.
The outer Block statement ``B1`` defines an IMPLICIT Guard signal
Which is TRUE only on the Rising Edge of the Clock.
The Implicit Guard Signal ANDed with the Present State define the
Guard Condition for the Nested Block Statements.
ONE Inner Block Statement is assigned to each possible Present
State.
The State Machine Model used allows only One Driver of the
Resolved Signal PS to be Active at any Given Time. Thus the `Left
Attribute is used in the RF to derive the signal value forced by this
driver.

9-51

Sequence Detector Example …

Overlapped Detection of the Sequence “1011”

Initial /
Reset State

•A simple 1011 Mealy Sequence Detector

•Single Input x and A single Output z

•For x= 011011011011110111

z= 000001001001000010

Entity detector IS

PORT (x, clk : IN Bit; z : out Bit);

END detector;

9-52

… Sequence Detector Example …
Architecture Singular_state_machine OF Detector IS
TYPE State IS (Reset, Got1, Got10, Got101);
Type State_vector Is Array (Natural Range <>) Of State;
Function One_of (Sources : State_vector) Return State Is
BEGIN

RETURN Sources(Sources’Left);
End One_of;
Signal PS : One_of State Register := Reset;
Begin
Clocking : BLOCK (Clk = '1' AND NOT Clk‘Stable)
Begin
S1: BLOCK (PS = Reset AND GUARD)
BEGIN
PS <= GUARDED Got1 When X = '1' Else Reset;
End Block S1;

9-53

… Sequence Detector Example …
S2: Block (PS = Got1 And Guard)
Begin
PS <= GUARDED Got10 When X = '0' Else Got1;
End Block S2;
S3: Block (PS = Got10 And Guard)
Begin
PS <= Guarded Got101 When X = '1' Else Reset;
End Block S3;
S4: Block (PS = Got101 And Guard)
Begin
PS <= Guarded Got1 When X = '1' Else Got10;
End Block S4;
End Block Clocking;

Z <= '1' When (PS = Got101 And X = '1') Else '0';

End Singular_state_machine;

• PS receives four
concurrent assignments
• PS must be resolved; use
one_of as an RF

9-54

… Sequence Detector Example …
--States are: 1 = reset, 2 = got1, 3 = got10, 4 = got101
--use a signal for each state
ARCHITECTURE multiple_state_machine OF detector IS
SIGNAL s : ored_bit_vector (1 TO 4) REGISTER := "1000";
BEGIN
clocking : BLOCK (clk = '1' AND NOT clk'STABLE)
BEGIN

s1: BLOCK (s(1) = '1' AND GUARD)
BEGIN

s(1) <= GUARDED '1' WHEN x = '0' ELSE '0';
s(2) <= GUARDED '1' WHEN x = '1' ELSE '0';

END BLOCK s1;
s2: BLOCK (s(2) = '1' AND GUARD)
BEGIN

s(3) <= GUARDED '1' WHEN x = '0' ELSE '0';
s(2) <= GUARDED '1' WHEN x = '1' ELSE '0';

END BLOCK s2;

9-55

… Sequence Detector Example
s3: BLOCK (s(3) = '1' AND GUARD)
BEGIN

s(1) <= GUARDED '1' WHEN x = '0' ELSE '0';
s(4) <= GUARDED '1' WHEN x = '1' ELSE '0';

END BLOCK s3;
s4: BLOCK (s(4) = '1' AND GUARD)
BEGIN

s(3) <= GUARDED '1' WHEN x = '0' ELSE '0';
s(2) <= GUARDED '1' WHEN x = '1' ELSE '0';
z <= '1' WHEN (s(4) = '1' AND x = '1') ELSE '0';

END BLOCK s4;
s <= GUARDED "0000";
END BLOCK clocking;
END multiple_state_machine;

•S <= GUARDED "0000";
Causes removal of retained
value upon last disconnection

9-56

General Mealy State Machine …
ENTITY detector_m IS

PORT (x,clk : IN BIT; z : OUT BIT);
END detector_m;
ARCHITECTURE multiple_moore_machine_1 OF detector_m IS
FUNCTION oring(drivers : BIT_VECTOR) RETURN BIT IS
VARIABLE accumulate : BIT := '0';
BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate OR drivers(i);
END LOOP;
RETURN accumulate;
END oring;
SUBTYPE ored_bit IS oring BIT;
TYPE ored_bit_vector IS ARRAY (NATURAL RANGE <>) OF ored_bit;
TYPE next_table IS ARRAY (1 TO 6, BIT) OF INTEGER;
TYPE out_table IS ARRAY (1 TO 6, BIT) OF BIT;

9-57

… General Mealy State Machine …
-- Fill in next_val, out_val, and s arrays
SIGNAL o : ored_bit REGISTER;
BEGIN
clocking : BLOCK (clk = '1' AND (NOT clk'STABLE))
BEGIN
g: FOR i IN s'RANGE GENERATE
si: BLOCK (s(i) = '1' AND GUARD)
BEGIN
s(next_val(i,'0')) <= GUARDED '1' WHEN x='0' ELSE '0';
s(next_val(i,'1')) <= GUARDED '1' WHEN x='1' ELSE '0';
o <= GUARDED out_val(i, x);
END BLOCK si;
s (i) <= GUARDED '0';
END GENERATE;
END BLOCK clocking;
z <= o;
END multiple_moore_machine_1;

9-58

… General Mealy State Machine
--The folowing tables program the general purpose Moore description--
-- -- Next States: ----- x=0, x=1 --
CONSTANT next_val : next_table := ((1 , 2), --S1: -> S1, S2 --
(1 , 3), --S2: -> S1, S3 --
(1 , 4), --S3: -> S1, S4 --
(1 , 1), --S4: -> S1, S1 --
(5 , 6), --S5: -> S5, S6 --
(5 , 6)); --S6: -> S5, S6 --
-- -- Output Values: ----- x=0, x=1 --
CONSTANT out_val : out_table := (('0' , '0'), --S1: z=0, 0 --
('0' , '0'), --S2: z=0, 0 --
('0' , '0'), --S3: z=0, 0 --
('0' , '0'), --S4: z=1, 1 --
('0' , '0'), --S5: z=0, 0 --
('1' , '1'));--S6: z=1, 1 --
-- -- Initial Active States: --
SIGNAL s : ored_bit_vector (1 TO 6) REGISTER := "100000"; --

9-59

Multiplier Design

Design a Multiplier Circuit which Multiplies 2 Unsigned
n-bit numbers A (multiplicand) & B (multiplier).
The Product (P) is evaluated by repeated additions of
the Multiplicand (B) to itself a number of times equals
the Multiplier (A) value.
Example
1. A=3, B=4 P = 4 + 4 +4
2. A=0, B=4 P = 0
3. A=3, B=0 P = 0 + 0 + 0
Required Data Path Modules:
• A-Register (n-Bits) AR
• B-Register (n-Bits) BR
• P-Register (2n-Bits) PR
• Adder

S0

S1

Start

Start

AR A

BR B

PR 0

AR > 0

AR = 0

9-60

Data Path Design

AR

n

LD_ARn
A

DEC_AR

Zero
(AR=0)

PR

BR

n

2n

n
0

2n
CLR_PR

LD_PR

LD_BR

n
B

Adder

9-61

Controller Model …
Entity CPath_Mult is
Port (clk, start, zero: IN Bit ;
LD_AR, LD_BR, CLR_PR, LD_PR, Dec_AR: OUT BIT);
End CPath_Mult ;
Architecture DF of CPath_Mult is
Type States is (Initial, Iterative);
Type State_Vector is Array (Natural Range <>) of States;
Function RF(V:State_Vector) Return States is
Begin

Return V(V'Left);
end RF;
Signal PS: RF States Register := Initial;
Begin
edge: Block(Clk='1' and not Clk'Stable)

Begin

9-62

… Controller Model
S0: Block(PS= Initial and Guard)

Begin
PS <= Guarded Iterative when Start='1' Else Initial;
end Block S0;

S1: Block(PS= Iterative and Guard)
Begin

PS <= Guarded Iterative when Zero /='1' Else Initial;
end Block S1;
LD_AR <= '1' when PS= Initial and Start='1' else '0';
LD_BR <= '1' when PS= Initial and Start='1' else '0';
Clr_PR <= '1' when PS= Initial and Start='1' else '0';
LD_PR <= '1' when PS=Iterative and Zero /= '1' else '0';
DEC_AR <= '1' when PS=Iterative and Zero /= '1' else '0';

End Block edge;
End DF;

9-63

Data Path Model …
Entity DPath_Mult is

Generic(N: Positive:= 8);

Port(LD_AR, LD_BR, CLR_PR, LD_PR,Dec_AR, Clk: in Bit ; A, B: in Bit_Vector(N-1 DownTo
0); Zero: out Bit :='0'; P: out Bit_Vector(2*N-1 DownTo 0));

End DPath_Mult ;
Architecture DF of DPath_Mult is

Signal AR, BR : Bit_Vector(N-1 DownTo 0);

Signal PR : Bit_Vector(2*N-1 DownTo 0);

Signal ARE,BRE,PRE : Boolean:=False ;

Begin

ARE <= LD_AR='1' or DEC_AR='1' ;

BRE <= LD_BR='1' ; -- Inner Block (Register) Enable Signals

PRE <= LD_PR='1' or CLR_PR='1' ;

edge: Block(Clk='1' and not Clk'Stable)

Begin

9-64

Data Path Model …
AReg: Block(ARE and Guard)

Begin

AR <= Guarded A when LD_AR='1' else AR+(N-1 Downto 0=>'1') when Zero /= '1' else
Unaffected;
Zero <= '1' when (Bin2Int(AR)=0) else '0';

end Block AReg;
BReg: Block(BRE and Guard)

Begin
BR <= Guarded B;

end Block BReg;
PReg: Block(PRE and Guard)
Begin

PR <= Guarded PR+ (N-1 Downto 0 => '0')&BR when LD_PR='1' else (2*N-1 Downto 0 => '0');
end Block PReg;

End Block edge;
P <= PR ;

End DF;

9-65

+ive Edge-Triggered Shift Register
with Parallel Load …
Register INPUTS In Order of Priority

Ena : If Ena=0, The register Cannot Change its state.
LD : IF LD = 1, Data on the parallel inputs (Din) are
Loaded into the Register independent of the Clock
Signal (Asynchronous Load)
Dir : Determines the Direction of the Shift or Rotate
Operation. Dir=0 indicates a Left shift/Rotate while Dir
= 1, indicates a Right Shift /Rotate.
Shift Mode Signals M1 & M2
• M1M2 : 00 A 0 is Shifted-In
• M1M2 : 01 A 1 is Shifted-In
• M1M2 : 10 The Sin input is Shifted-In
• M1M2 : 11 Rotate Operation.

9-66

… +ive Edge-Triggered Shift Register
with Parallel Load …
Type MVL4 is (‘X’, ‘0’, ‘1’, ‘Z’);
Type MVL4_Vec is Array(Natural range <>) of MVL4 ;
Type MVL4_Tab is array(MVL4 , MVL4) of MVL4;
Constant Tab_X : MVL4_Tab :=
-- 'x', '0', '1', 'Z'

(('x', 'x', 'x', 'x'), -- 'x'
('x', '0', 'x', '0'), -- '0'
('x', 'x', '1', '1'), -- '1'
('x', '0', '1', 'z')); -- 'z'

Function WiredX (INP : MVL4_Vec) Return MVL4 is
Variable Result: MVL4:='z';-- Initialize
Begin

For i in INP'Range Loop
Result:= TAB_X(Result , INP(i));

End Loop;
Return Result;

end WiredX ;
SubType WX is WiredX MVL4 ;
Type WX_Vector is Array(Natural range <>) of WX ;

9-67

… +ive Edge-Triggered Shift Register
with Parallel Load …
Entity ShiftReg is

Port (Ena, Ld, Clk, Dir, M1, M2 : in Bit;
Sin : in MVL4 ;
Din : in WX_Vector(7 downto 0);
Q : Out WX_Vector(7 downto 0));

END ShiftReg ;

Architecture DF of ShiftReg is
Signal I_State : WX_Vector(7 downto 0) Register;

signal t: bit_vector(2 downto 0);
Begin
t <= Dir & M1 & M2 ;
Load: Block(Ena=‘1’ and Ld=‘1’)

begin
I_State <= Guarded Din;

end block Load;

9-68

… +ive Edge-Triggered Shift Register
with Parallel Load …
Shift: Block(Ena=‘1’ and Ld=‘0’ and Clk=‘1’ and not Clk`Stable)

begin
With t Select
I_State <= Guarded

I_State(6 downto 0) & ‘0’ When “000” ,
I_State(6 downto 0) & ‘1’ When “001” ,
I_State(6 downto 0) & Sin When “010” ,
I_State(6 downto 0) & I_State(7) When “011” ,
‘0’ & I_State(7 downto 1) When “100” ,
‘1’ & I_State(7 downto 1) When “101” ,
Sin & I_State(7 downto 1) When “110” ,
I_State(0)& I_State(7 downto 1) When “111”;

end block Shift;
Q <= I_State After 5 ns ;

End DF ;

9-69

… +ive Edge-Triggered Shift Register
with Parallel Load

I_State

LOAD
Block

Din

Ena='1'
LD='1'

SHIFT
Block

Ena='1'
LD='0'
Clk =↑

Register Driver

WiredX

