COE 405 Design Methodology Based on VHDL

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

Outline

- Elements of VHDL
- Top-Down Design
- Top-Down Design with VHDL
 Serial Adder Design
- Subprograms
- Controller Description
 Moore sequence detector
- VHDL Operators

Package Examples

Standard Package

- Defines primitive types, subtypes, and functions.
- e.g. Type Boolean IS (false, true);
- e.g. Type Bit is ('0', '1');

TEXTIO Package

• Defines types, procedures, and functions for standard text I/O from ASCII files.

... Design Libraries

IEEE library

- Contains VHDL-related standards
- Contains the std_logic_1164 (IEEE 1164.1) package
 Defines a nine values logic system
- To make a library visible to a design
 LIBRARY libname;
- The following statement is assumed by all designs
 LIBRARY WORK;
- To use the std_logic_1164 package
 - LIBRARY IEEE
 - USE IEEE.std_logic_1164.ALL

2-7

<section-header><list-item><list-item><list-item><list-item><list-item>

Design Assumptions

- Synthesis tools:
 - Capable of synthesizing logic expressions to combinational logic blocks
- Design Library:
 - A 2x1 multiplexer with active high inputs and outputs
 - A synchronous D-FF with synchronous active high reset input
 - VHDL models of library elements are provided

Parts from previous designs

- Divide-by-8 counter (3-bit counter)
 - Synchronous reset
 - Single bit output remains high as long as the circuit is counting; it goes to low when reset is pressed or 8 clock edges are counted

Serial Adder Behavioral Description

Shifter VHDL Description

Entity shifter IS port (sin, reset, enable, clk: IN bit; parout: BUFFER Bit_Vector(7 downto 0)); END shifter ; Architecture dataflow OF shifter IS Begin sh: BLOCK (clk='0' AND NOT clk'STABLE) Begin parout <= GUARDED "00000000" WHEN reset='1' ELSE sin & parout(7 downto 1) WHEN enable='1' ELSE parout; - -could use here UNAFFECTED (VHDL'93) END BLOCK; END dataflow ;

```
2-27
```

Structural Description of Serial Adder
Entity serial_adder IS
PORT (a, b, start, clock: IN BIT; ready: OUT BIT;
result: OUT Bit_Vector (7 downto 0));
END serial_adder ;
Architecture structural OF serial_adder IS
Component counter IS
Generic (td_cnt: TIME := 8 NS);
PORT (reset, clk: IN BIT; counting: OUT BIT :='0');
END component ;
Component shifter IS port (sin, reset, enable, clk: IN bit; parout: BUFFER Bit_Vector(7 downto 0));
END component ;
Component fulladder IS
port (a, b, cin: IN bit; sum, cout: OUT bit);
END component ;
Component flop IS
Generic (td_reset, td_in: TIME := 8 NS);
PORT (reset, din, clk: IN BIT; qout: Buffer BIT :='0');
END component ;
2-28

SIGNAL sum, carry_in, carry_out, counting: BIT; Begin u1: fulladder port map (a, b, carry_in, sum, carry_out); u2: flop port map (start, carry_out, clock, carry_in); u3: counter port map (start, clock, counting); u4: shifter port map (sum, start, counting, clock, result); u5: ready <= NOT counting; END structural ; 2-29

Behavioral Model of der_flop

Entity der_flop IS PORT (din, reset, enable, clk: IN BIT; qout: Buffer BIT :='0'); END der_flop; Architecture behavioral OF der_flop IS Begin Process(clk) Begin IF (clk = '0' AND clk'Event) Then IF reset = '1' Then qout <= '0'; ELSE IF enable='1' Then qout <= din; END IF; END IF; END IF; END process; END behavioral;

Structural Description of der_flop Entity der_flop IS PORT (din, reset, enable, clk: IN BIT; qout: Buffer BIT :='0'); END der_flop; Architecture structural OF der_flop IS Component flop IS Generic (td_reset, td_in: TIME := 8 NS); PORT (reset, din, clk: IN BIT; qout: Buffer BIT :='0'); END component ; Component mux2_1 IS Generic (dz_delay: TIME := 6 NS); PORT (sel, data1, data0: IN BIT; z: OUT BIT); END component ; Signal dff_in: BIT; Begin mx: mux2_1 port map (enable, din, qout, dff_in); ff: flop port map (reset, dff_in, clk, qout); END structural ; 2-34

Function Example

VHDL Description of Moore 110 Sequence Detector

