
VHDL Coding Styles for
Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

11-2

Outline…
Synthesis overview
Synthesis of primary VHDL constructs
• Constant definition
• Port map statement
• When statement
• With statement
• Case statement
• For statement
• Generate statement
• If statement
• Variable definition

Combinational circuit synthesis
• Multiplexor
• Decoder
• Priority encoder
• Adder
• Tri-state buffer
• Bi-directional buffer

11-3

…Outline
Sequential circuit synthesis
• Latch
• Flip-flop with asynchronous reset
• Flip-flop with synchronous reset
• Loadable register
• Shift register
• Register with tri-state output
• Finite state machine

Efficient coding styles for synthesis

11-4

General Overview of Synthesis…

Synthesis is the process of translating from an
abstract description of a hardware device into an
optimized, technology specific gate level
implementation.
Synthesis may occur at many different levels of
abstraction
• Behavioral synthesis
• Register Transfer Level (RTL) synthesis
• Boolean equations descriptions, netlists, block diagrams, truth

tables, state tables, etc.

RTL synthesis implements the register usage, the data
flow, the control flow, and the machine states as
defined by the syntax & semantics of the HDL.

11-5

…General Overview of Synthesis

Forces driving the synthesis algorithm
• HDL coding style
• Design constraints

• Timing goals
• Area goals
• Power management goals
• Design-For-Test rules

• Target technology
• Target library design rules

The HDL coding style used to describe the targeted
device is technology independent.
HDL coding style determines the initial starting point
for the synthesis algorithms & plays a key role in
generating the final synthesized hardware.

11-6

VHDL Synthesis Subset

VHDL is a complex language but only a subset of it is
synthesizable.
Primary VDHL constructs used for synthesis:
• Constant definition
• Port map statement
• Signal assignment: A <= B
• Comparisons: = (equal), /= (not equal), > (greater than), < (less

than), >= (greater than or equal), <= (less than or equal)
• Logical operators: AND, OR, NAND, NOR, XOR, XNOR, NOT
• 'if' statement

• if (presentstate = CHECK_CAR) then
• end if | elsif

• 'for' statement (used for looping in creating arrays of elements)
• Other constructs are ‘with’, ’when’, 'when else', 'case' , 'wait '.

Also ":=" for variable assignment.

11-7

Outline
Synthesis overview
Synthesis of primary VHDL constructs
• Constant definition
• Port map statement
• When statement
• With statement
• Case statement
• For statement
• Generate statement
• If statement
• Variable definition

Combinational circuit synthesis
• Multiplexor
• Decoder
• Priority encoder
• Adder
• Tri-state buffer
• Bi-directional buffer

11-8

Constant Definition…

library ieee;
use ieee.std_logic_1164.all;
entity constant_ex is

port (in1 : in std_logic_vector (7 downto 0); out1 : out
std_logic_vector (7 downto 0));

end constant_ex;
architecture constant_ex_a of constant_ex is

constant A : std_logic_vector (7 downto 0) := "00000000";
constant B : std_logic_vector (7 downto 0) := "11111111";
constant C : std_logic_vector (7 downto 0) := "00001111";

begin
out1 <= A when in1 = B else C;

end constant_ex_a;

11-9

…Constant Definition

11-10

Port Map Statement…

library ieee;
use ieee.std_logic_1164.all;
entity sub is

port (a, b : in std_logic; c : out std_logic);
end sub;
architecture sub_a of sub is
begin

c <= a and b;
end sub_a;

11-11

…Port Map Statement…

library ieee;
use ieee.std_logic_1164.all;
entity portmap_ex is

port (in1, in2, in3 : in std_logic; out1 : out std_logic);
end portmap_ex;
architecture portmap_ex_a of portmap_ex is

component sub
port (a, b : in std_logic; c : out std_logic);

end component;
signal temp : std_logic;

11-12

…Port Map Statement…

begin
u0 : sub port map (in1, in2, temp);
u1 : sub port map (temp, in3, out1);

end portmap_ex_a;
use work.all;
configuration portmap_ex_c of portmap_ex is

for portmap_ex_a
for u0,u1 : sub use entity work.sub (sub_a);
end for;

end for;
end portmap_ex_c;

11-13

Port Map Statement…

11-14

When Statement

library ieee;
use ieee.std_logic_1164.all;
entity when_ex is

port (in1, in2 : in std_logic; out1 : out std_logic);
end when_ex;
architecture when_ex_a of when_ex is
begin

out1 <= '1' when in1 = '1' and in2 = '1' else '0';
end when_ex_a;

11-15

With Statement

library ieee;
use ieee.std_logic_1164.all;
entity with_ex is

port (in1, in2 : in std_logic; out1 : out std_logic);
end with_ex;
architecture with_ex_a of with_ex is
begin

with in1 select out1 <= in2 when '1',
'0' when others;

end with_ex_a;

11-16

Case Statement…
library ieee;
use ieee.std_logic_1164.all;
entity case_ex is

port (in1, in2 : in std_logic; out1,out2 : out std_logic);
end case_ex;
architecture case_ex_a of case_ex is

signal b : std_logic_vector (1 downto 0);
begin

process (b)
begin

case b is
when "00"|"11" => out1 <= '0'; out2 <= '1';
when others => out1 <= '1'; out2 <= '0';

end case;
end process;
b <= in1 & in2;

end case_ex_a;

11-17

…Case Statement

11-18

For Statement…
library ieee;
use ieee.std_logic_1164.all;
entity for_ex is

port (in1 : in std_logic_vector (3 downto 0); out1 : out
std_logic_vector (3 downto 0));

end for_ex;
architecture for_ex_a of for_ex is
begin

process (in1)
begin

for0 : for i in 0 to 3 loop
out1 (i) <= not in1(i);

end loop;
end process;

end for_ex_a;

11-19

…For Statement

11-20

Generate Statement

signal A,B:BIT_VECTOR (3 downto 0);
signal C:BIT_VECTOR (7 downto 0);
signal X:BIT;

. . .

GEN_LABEL:
for I in 3 downto 0 generate

C(2*I+1) <= A(I) nor X;
C(2*I) <= B(I) nor X;

end generate GEN_LABEL

11-21

If Statement
library ieee;
use ieee.std_logic_1164.all;
entity if_ex is

port (in1, in2 : in std_logic; out1 : out std_logic);
end if_ex;
architecture if_ex_a of if_ex is

begin
process (in1, in2)
begin

if in1 = '1' and in2 = '1' then out1 <= '1';
else out1 <= '0';
end if;

end process;
end if_ex_a;

11-22

Variable Definition…

library ieee;
use ieee.std_logic_1164.all;
entity variable_ex is

port (a : in std_logic_vector (3 downto 0); b : in std_logic_vector
(3 downto 0); c : out std_logic_vector (3 downto 0));

end variable_ex;
architecture variable_ex_a of variable_ex is
begin

process (a,b)
variable carry : std_logic_vector (4 downto 0);
variable sum : std_logic_vector (3 downto 0);

11-23

…Variable Definition…

begin
carry (0) := '0';
for i in 0 to 3 loop

sum (i) := a(i) xor b(i) xor carry(i);
carry (i+1) := (a(i) and b(i)) or (b(i) and carry (i))

or (carry (i) and a(i));
end loop;

c <= sum;
end process;

end variable_ex_a;

11-24

…Variable Definition

11-25

Outline
Synthesis overview
Synthesis of primary VHDL constructs
• Constant definition
• Port map statement
• When statement
• With statement
• Case statement
• For statement
• Generate statement
• If statement
• Variable definition

Combinational circuit synthesis
• Multiplexor
• Decoder
• Priority encoder
• Adder
• Tri-state buffer
• Bi-directional buffer

11-26

Multiplexor Synthesis…
library ieee;
use ieee.std_logic_1164.all;
entity mux is

port (in1, in2, ctrl : in std_logic; out1 : out std_logic);
end mux;
architecture mux_a of mux is
begin

process (in1, in2, ctrl)
begin

if ctrl = '0' then out1 <= in1;
else out1 <= in2;
end if;

end process;
end mux_a;

11-27

…Multiplexor Synthesis

entity mux2to1_8 is
port (signal s: in std_logic; signal zero,one: in std_logic_vector(7
downto 0); signal y: out std_logic_vector(7 downto 0));

end mux2to1_8;
architecture behavior of mux2to1_8 is
begin

y <= one when (s = '1') else zero;
end behavior;

11-28

2x1 Multiplexor using Booleans

architecture boolean_mux of mux2to1_8 is
signal temp: std_logic_vector(7 downto 0);

begin
temp <= (others => s);
y <= (temp and one) or (not temp and zero);

end boolean_mux;

• The s signal cannot be used in a Boolean operation with
the one or zero signals because of type mismatch (s is a
std_logic type, one/zero are std_logic_vector types)

• An internal signal of type std_logic_vector called temp
is declared. The temp signal will be used in
the Boolean operation against the zero/one signals.

• Every bit of temp is set equal to the s signal value.

11-29

2x1 Multiplexor using a Process

architecture process_mux of mux2to1_8 is
begin

comb: process (s, zero, one)
begin

y <= zero;
if (s = '1') then

y <= one;
end if;

end process comb;
end process_mux ;

11-30

Decoder Synthesis…
library ieee;
use ieee.std_logic_1164.all;
entity decoder is

port (in1, in2 : in std_logic; out00, out01, out10, out11 : out std_logic);
end decoder;
architecture decoder_a of decoder is
begin

process (in1, in2)
begin

if in1 = '0' and in2 = '0' then out00 <= '1';
else out00 <= '0';
end if;
if in1 = '0' and in2 = '1' then out01 <= '1';
else out01 <= '0';
end if;

11-31

…Decoder Synthesis

if in1 = '1' and in2 = '0' then out10 <= '1';
else out10 <= '0';
end if;
if in1 = '1' and in2 = '1' then out11 <= '1';
else out11 <= '0';
end if;

end process;
end decoder_a;

11-32

3-to-8 Decoder Example…
entity dec3to8 is

port (signal sel: in std_logic_vector(2 downto 0); signal en: in std_logic;
signal y: out std_logic_vector(7 downto 0)) ;

end dec3to8;
architecture behavior of dec3to8 is
begin

process (sel, en)
Begin

y <= “11111111”;
if (en = ‘1’) then

case sel is
when “000” => y(0) <= ‘0’; when “001” => y(1) <= ‘0’;
when “010” => y(2) <= ‘0’; when “011” => y(3) <= ‘0’;
when “100” => y(4) <= ‘0’; when “101” => y(5) <= ‘0’;
when “110” => y(6) <= ‘0’; when “111” => y(7) <= ‘0’;
when others => Null;

end case;
end if;

end process;
end behavior;

11-33

…3-to-8 Decoder Example…

11-34

…3-to-8 Decoder Example …

11-35

…3-to-8 Decoder Example…
entity dec3to8 is

port (signal sel: in std_logic_vector(2 downto 0); signal en: in std_logic; signal y: out
std_logic_vector(7 downto 0)) ;

end dec3to8;
architecture behavior of dec3to8v is
signal t: std_logic_vector(7 downto 0);
begin

process (sel, en)
Begin

t <= "00000000";
if (en = '1') then

case sel is
when "000" => t(0) <= '1'; when "001" => t(1) <= '1';
when "010" => t(2) <= '1'; when "011" => t(3) <= '1';
when "100" => t(4) <= '1'; when "101" => t(5) <= '1';
when "110" => t(6) <= '1'; when "111" => t(7) <= '1';
When others => Null;

end case;
end if;

end process;
Y <= Not t;

end behavior;

11-36

3-to-8 Decoder Example…

11-37

Architecture of Generic Decoder
library ieee;
use ieee.std_logic_1164.all;
entity generic_decoder is
Generic(K: Natural :=3);

port (signal sel: in std_logic_vector(K-1 downto 0); signal en: in std_logic;
signal y: out std_logic_vector(2**K-1 downto 0)) ;

end generic_decoder;
architecture behavior of generic_decoder is
begin

process (sel, en)
begin

y <= (others => '0') ;
for i in y'range loop

if (en = '1' and Bin2Int(sel) = i) then
y(i) <= '1' ;

end if ;
end loop;

end process;
end behavior;

Bin2Int is a function to convert
from std_logic_vector to integer

11-38

Architecture of Generic Decoder

11-39

A Common Error in Process
Statements…

When using processes, a common error is to forget to
assign an output a default value.
• ALL outputs should have DEFAULT values

If there is a logical path in the model such that an
output is not assigned any value
• the synthesizer will assume that the output must retain its

current value
• a latch will be generated.

Example: In dec3to8.vhd do not assign 'y' the default
value of B"11111111"
• If en is 0, then 'y' will not be assigned a value
• In the new synthesized logic, all 'y' outputs are latched

11-40

…A Common Error in Process
Statements…
entity dec3to8 is

port (signal sel: in std_logic_vector(3 downto 0); signal en: in std_logic;
signal y: out std_logic_vector(7 downto 0))

end dec3to8;
architecture behavior of dec3to8 is
begin

process (sel, en)
-- y <= “1111111”;

if (en = ‘1’) then
case sel is

when “000” => y(0) <= ‘0’; when “001” => y(1) <= ‘0’;
when “010” => y(2) <= ‘0’; when “011” => y(3) <= ‘0’;
when “100” => y(4) <= ‘0’; when “101” => y(5) <= ‘0’;
when “110” => y(6) <= ‘0’; when “111” => y(7) <= ‘0’;

end case;
end if;

end process;
end behavior;

No default value
assigned to y!!

11-41

…A Common Error in Process
Statements

11-42

Another Incorrect Latch Insertion
Example…
entity case_example is

port (in1, in2 : in std_logic; out1, out2 : out std_logic);
end case_example;
architecture case_latch of case_example is

signal b : std_logic_vector (1 downto 0);
begin

process (b)
begin

case b is
when "01" => out1 <= '0'; out2 <= '1';
when "10" => out1 <= '1'; out2 <= '0';
when others => out1 <= '1';

end case;
end process;
b <= in1 & in2;

end case_latch;

out2 has not been
assigned a value for
others condition!!

11-43

…Another Incorrect Latch Insertion
Example

11-44

Avoiding Incorrect Latch Insertion

architecture case_nolatch of case_example is
signal b : std_logic_vector (1 downto 0);

begin
process (b)
begin

case b is
when "01" => out1 <= '0'; out2 <= '1';
when "10" => out1 <= '1'; out2 <= '0';
when others => out1 <= '1'; out2 <= '0';

end case;
end process;
b <= in1 & in2;

end case_nolatch;

11-45

Eight-Level Priority Encoder…
Entity priority is

Port (Signal y1, y2, y3, y4, y5, y6, y7: in std_logic;
Signal vec: out std_logic_vector(2 downto 0));

End priority;
Architecture behavior of priority is
Begin

Process(y1, y2, y3, y4, y5, y6, y7)
begin

if (y7 = ‘1’) then vec <= “111”; elsif (y6 = ‘1’) then vec <= “110”;
elsif (y5 = ‘1’) then vec <= “101”; elsif (y4 = ‘1’) then vec <= “100”;
elsif (y3 = ‘1’) then vec <= “011”; elsif (y2 = ‘1’) then vec <= “010”;
elsif (y1= ‘1’) then vec <= “001”; else vec <= “000”;
end if;

end process;
End behavior;

11-46

…Eight-Level Priority Encoder…

11-47

Eight-Level Priority Encoder…
Architecture behavior2 of priority is
Begin

Process(y1, y2, y3, y4, y5, y6, y7)
begin

vec <= “000”;
if (y1 = ‘1’) then vec <= “001”; end if;
if (y2 = ‘1’) then vec <= “010”; end if;
if (y3 = ‘1’) then vec <= “011”; end if;
if (y4 = ‘1’) then vec <= “100”; end if;
if (y5 = ‘1’) then vec <= “101”; end if;
if (y6 = ‘1’) then vec <= “110”; end if;
if (y7= ‘1’) then vec <= “111”; end if;

end process;
End behavior2;

Equivalent 8-level
priority encoder.

11-48

Ripple Carry Adder…

library ieee;
use ieee.std_logic_1164.all;
entity adder4 is

port (Signal a, b: in std_logic_vector (3 downto 0);
Signal cin : in std_logic;
Signal sum: out std_logic_vector (3 downto 0);
Signal cout : out std_logic);

end adder4;
architecture behavior of adder4 is
Signal c: std_logic_vector (4 downto 0);
begin

C is a temporary signal
to hold the carries.

11-49

…Ripple Carry Adder…

process (a, b, cin, c)
begin

c(0) <= cin;
for I in 0 to 3 loop

sum(I) <= a(I) xor b(I) xor c(I);
c(I+1) <= (a(I) and b(I)) or (c(I) and (a(I) or b(I)));

end loop;
end process;
cout <= c(4);

End behavior;

• The Standard Logic 1164 package does not
define arithmetic operators for the std_logic type.

• Most vendors supply some sort of arithmetic
package for 1164 data types.

• Some vendors also support synthesis using the
'+' operation between two std_logic
signal types (Synopsis).

11-50

…Ripple Carry Adder

11-51

Tri-State Buffer Synthesis

library ieee;
use ieee.std_logic_1164.all;
entity tri_ex is

port (in1, control : in std_logic; out1 : out std_logic);
end tri_ex;
architecture tri_ex_a of tri_ex is
begin

out1 <= in1 when control = '1' else 'Z';
end tri_ex_a;

11-52

Bi-directional Buffer Synthesis

library ieee;
use ieee.std_logic_1164.all;
entity inout_ex is

port (io1, io2 : inout std_logic; ctrl : in std_logic);
end inout_ex;
architecture inout_ex_a of inout_ex is
begin

io1 <= io2 when ctrl = '1' else 'Z';
io2 <= io1 when ctrl = '0' else 'Z';

end inout_ex_a;

11-53

Outline
Sequential circuit synthesis
• Latch
• Flip-flop with asynchronous reset
• Flip-flop with synchronous reset
• Loadable register
• Shift register
• Register with tri-state output
• Finite state machine

Efficient coding styles for synthesis

11-54

Sequential Circuits

Sequential circuits consist of both combinational logic
and storage elements.
Sequential circuits can be

• Moore-type: outputs are a combinatorial function of Present
State signals.

• Mealy-type: outputs are a combinatorial function of both Present
State signals and primary inputs.

Combinational
Logic

FFs

^

Primary
Inputs

Primary
Outputs

CLK

Present State Next State

11-55

Template Model for a Sequential
Circuit
entity model_name is

port (list of inputs and outputs);
end model_name;
architecture behavior of model_name is

internal signal declarations
begin

-- the state process defines the storage elements
state: process (sensitivity list -- clock, reset, next_state inputs)
begin

vhdl statements for state elements
end process state;
-- the comb process defines the combinational logic
comb: process (sensitivity list -- usually includes all inputs)
begin

vhdl statements which specify combinational logic
end process comb;

end behavior;

11-56

Latch Synthesis…
library ieee;
use ieee.std_logic_1164.all;
entity latch_ex is

port (clock, in1 : in std_logic; out1 : out std_logic);
end latch_ex;
architecture latch_ex_a of latch_ex is
begin

process (clock, in1)
begin

if (clock = '1') then
out1 <= in1;

end if;
end process;

end latch_ex_a;

11-57

…Latch Synthesis

11-58

Flip-Flop Synthesis with
Asynchronous Reset…
library ieee;
use ieee.std_logic_1164.all;
entity dff_asyn is

port(reset, clock, d: in std_logic; q: out std_logic);
end dff_asyn;
architecture dff_asyn_a of dff_asyn is
begin

process (reset, clock)
begin

if (reset = '1') then
q <= '0';

elsif clock = '1' and clock'event then
q <= d;

end if;
end process;

end dff_asyn_a;

•Note that the reset input has precedence
over the clock in order to define the
asynchronous operation.

11-59

…Flip-Flop Synthesis with
Asynchronous Reset

11-60

Flip-Flop Synthesis with
Synchronous Reset…
library ieee;
use ieee.std_logic_1164.all;
entity dff_syn is

port(reset, clock, d: in std_logic; q: out std_logic);
end dff_syn;
architecture dff_syn_a of dff_syn is
begin

process (clock)
begin

if clock = '1' and clock'event then
if (reset = '1') then q <= '0';
else q <= d;
end if;

end if;
end process;

end dff_syn_a;

11-61

…Flip-Flop Synthesis with
Synchronous Reset

11-62

8-bit Loadable Register with
Asynchronous Clear…
library ieee;
use ieee.std_logic_1164.all;
entity reg8bit is

port(reset, clock, load: in std_logic;
din: in std_logic_vector(7 downto 0);
dout: out std_logic_vector(7 downto 0));

end reg8bit;
architecture behavior of reg8bit is

signal n_state, p_state: std_logic_vector(7 downto 0);
begin

dout <= p_state;
comb: process (p_state, load, din)
begin

n_state <= p_state;
if (load = '1') then n_state <= din; end if;

end process comb;

11-63

…8-bit Loadable Register with
Asynchronous Clear…

state: process (clock , reset)
begin

if (reset = '0') then p_state <= (others => '0');
elsif (clock = '1' and clock'event) then

p_state <= n_state;
end if;

end process state;
End behavior;

• The state process defines a storage element
which is 8-bits wide, rising edge triggered,
and had a low true asynchronous reset.

•Note that the reset input has precedence
over the clock in order to define the
asynchronous operation.

11-64

…8-bit Loadable Register with
Asynchronous Clear

11-65

4-bit Shift Register…
library ieee;
use ieee.std_logic_1164.all;
entity shift4 is

port(reset, clock: in std_logic; din: in std_logic;
dout: out std_logic_vector(3 downto 0));

end shift4;
architecture behavior of shift4 is

signal n_state, p_state: std_logic_vector(3 downto 0);
begin

dout <= p_state;
state: process (clock, reset)
begin

if (reset = '0') then p_state <= (others => '0');
elsif (clock = '1' and clock'event) then

p_state <= n_state;
end if;

end process state;

11-66

…4-bit Shift Register…

comb: process (p_state, din)
begin

n_state(0) <= din;
for I in 3 downto 1 loop

n_state(I) <= p_state(I-1);
end loop;

end process comb;
End behavior;

• Serial input din is assigned to the D-input of the
first D-FF.

• For loop is used to connect the output of
previous flip-flop to the input of current flip-flop.

11-67

…4-bit Shift Register

11-68

Register with Tri-State Output…
library ieee;
use ieee.std_logic_1164.all;
entity tsreg8bit is

port(reset, clock, load, en: in std_logic;
signal din: in std_logic_vector(7 downto 0);
signal dout: out std_logic_vector(7 downto 0));

end tsreg8bit;
architecture behavior of tsreg8bit is

signal n_state, p_state: std_logic_vector(7 downto 0);
begin

dout <= p_state when (en='1') else "ZZZZZZZZ";
comb: process (p_state, load, din)
begin

n_state <= p_state;
if (load = '1') then n_state <= din; end if;

end process comb;

• Z assignment used
to specify tri-state
capability.

11-69

…Register with Tri-State Output…

state: process (clock , reset)
begin

if (reset = '0') then p_state <= (others => '0');
elsif (clock = '1' and clock'event) then

p_state <= n_state;
end if;

end process state;
End behavior;

11-70

…Register with Tri-State Output

11-71

Finite State Machine Synthesis…

00 01

10 11

1/10

0/00

0/01

1/10

-/10

-/10Reset=0

• Mealy model

• Single input, two outputs

• Synchronous reset

11-72

…Finite State Machine Synthesis…
library ieee;
use ieee.std_logic_1164.all;
entity state_ex is

port (in1, clock, reset : in std_logic; out1 :
out std_logic_vector (1 downto 0));

end state_ex;
architecture state_ex_a of state_ex is

signal cur_state, next_state : std_logic_vector (1 downto 0);
begin

process (clock, reset)
begin

if clock = '1' and clock'event then
if reset = '0' then cur_state <= "00";

else cur_state <= next_state;
end if;

end if;
end process;

11-73

…Finite State Machine Synthesis…
process (in1, cur_state)
begin

case cur_state is
when "00" => if in1 = '0' then next_state <= "10"; out1 <= "00";

else next_state <= "01"; out1 <= "10";
end if;

when "01" => if in1 = '0' then next_state <= cur_state;
out1 <= "01";

else next_state <= "10 "; out1 <= "10";
end if;

when "10" => next_state <= "11"; out1 <= "10";
when "11" => next_state <= "00"; out1 <= "10";
when others => null;

end case;
end process;

end state_ex_a;

11-74

…Finite State Machine Synthesis

11-75

Outline
Sequential circuit synthesis
• Latch
• Flip-flop with asynchronous reset
• Flip-flop with synchronous reset
• Loadable register
• Shift register
• Register with tri-state output
• Finite state machine

Efficient coding styles for synthesis

11-76

Key Synthesis Facts

Synthesis ignores the after clause in signal
assignment
• C <= A AND B after 10ns
• May cause mismatch between pre-synthesis and post-

synthesis simulation if a non-zero value used
• The preferred coding style is to write signal assignments

without the after clause.

If the process has a static sensitivity list, it is ignored
by the synthesis tool.
Sensitivity list must contain all read signals
• Synthesis tool will generate a warning if this condition is not

satisfied
• Results in mismatch between pre-synthesis and post-

synthesis simulation

11-77

Synthesis Static Sensitivity Rule

Original VHDL Code

Process(A, B)

Begin

D <= (A AND B) OR C;

End process;

Synthesis View of Original VHDL Code

Process(A, B, C)

Begin

D <= (A AND B) OR C;

End process;

A
B

C
D

A
B

C
D

Pre-Synthesis Simulation

Post-Synthesis Simulation

11-78

Impact of Coding Style on Synthesis
Execution Time
Inefficient Synthesis Execution Time

Process(Sel, A, B, C, D)

Begin

if Sel = “00 then Out <= A;

elsif Sel = “01” then Out<=B;

elsif Sel = “10” then Out<=C;

else Out<=D;

endif;

End process;

Efficient Synthesis Execution Time

Process(Sel, A, B, C, D)

Begin

case Sel is

when “00 => Out <= A;

when “01” Out<=B;

when “10” Out<=C;

when “11” Out<=D;

end case;

End process;

• Synthesis tool is capable of deducing that the if …elsif
conditions are mutually exclusive but precious CPU time is
required.

• In case statement, when conditions are mutually exclusive.

11-79

Synthesis Efficiency Via Vector
Operations

Inefficient Synthesis Execution Time

Process(Scalar_A, Vector_B)

Begin

for k in Vector_B`Range loop

Vector_C(k) <=Vector_B(k) and
Scalar_A;

end loop;

End process;

Efficient Synthesis Execution Time

Process(Scalar_A, Vector_B)

variable Temp:
std_logic_vector(Vector_B`Range)
;

Begin

Temp := (others => Scalar_A);

Vector_C <=Vector_B and Temp;

End process;

• Loop will be unrolled and analyzed by the synthesis tool.

• Vector operation is understood by synthesis and will be
efficiently synthesized.

11-80

Three-State Synthesis

A three-state driver signal must be declared as an
object of type std_logic.
Assignment of ‘Z’ infers the usage of three-state
drivers.
The std_logic_1164 resolution function, resolved, is
synthesized into a three-state driver.
Synthesis does not check for or resolve possible data
collisions on a synthesized three-state bus
• It is the designer responsibility

Only one three-state driver is synthesized per signal
per process.

11-81

Example of the Three-State / Signal /
Process Rule

Process(B, Use_B, A, Use_A)

Begin

D_Out <= 'Z';

if Use_B = '1' then

D_Out <= B;

end if;

if Use_A = '1' then

D_Out <= A;

end if;

End process;

A

B

D_Out

Use_A

Use_B

•Last scheduled
assignment has priority

11-82

Latch Inference & Synthesis Rules…

A latch is inferred to satisfy the VHDL fact that signals
and process declared variables maintain their values
until assigned new ones.
Latches are synthesized from if statements if all the
following conditions are satisfied
• Conditional expressions are not completely specified

• An else clause is omitted
• Objects conditionally assigned in an if statement are not

assigned a value before entering this if statement
• The VHDL attribute `EVENT is not present in the conditional if

expression.

If latches are not desired, then a value must be
assigned to the target object under all conditions of an
if statement (without the `EVENT attribute).

11-83

…Latch Inference & Synthesis Rules

For a case statement, latches are synthesized when it
satisfies all of the following conditions:
• An expression is not assigned to a VHDL object in every

branch of a case statement,
• VHDL objects assigned an expression in any case branch are

not assigned a value before the case statement is entered.

Latches are synthesized whenever a for…loop
statement satisfies all of the following conditions
• for…loop contains a next statement
• Objects assigned inside the for…loop are not assigned a

value before entering the enclosing for…loop

11-84

For…Loop Statement Latch Example

Process(Data_In, Copy_Enable)

Begin

for k in 7 downto 0 loop

next when Copy_Enable(k)='0';
Data_Out(k) <= Data_in(k);

end loop;

End process;

Data_In(k)

Copy_Enable(k)

Data_Out(k)

LATCH

Seven latches will be synthesized

11-85

Flip-Flop Inference & Synthesis
Rules…

Flip-flops are inferred by either
• Wait until….

• Wait on… is not supported by synthesis
• Wait for… is not supported by synthesis

• If statement containing `EVENT

Synthesis accepts any of the following functionally
equivalent statements for inferring a FF
• Wait until Clock=‘1’;
• Wait until Clock`Event and Clock=‘1’;
• Wait until (not Clock`Stable) and Clock=‘1’;

11-86

…Flip-Flop Inference & Synthesis
Rules

Synthesis does not support the following
Asynchronous description of set and reset signals
• Wait until (clock=‘1’) or (Reset=‘1’)
• Wait on Clock, Reset

When using a synthesizable wait statement only
synchronous set and reset can be used.
If statement containing the VHDL attribute `EVENT
cannot have an else or an elsif clause.

11-87

Alternative Coding Styles for
Synchronous FSMs

One process only
• Handles both state transitions and outputs

Two processes
• A synchronous process for updating the state register
• A combinational process for conditionally deriving the next

machine state and updating the outputs

Three processes
• A synchronous process for updating the state register
• A combinational process for conditionally deriving the next

machine state
• A combinational process for conditionally deriving the outputs

