
COE 405
Behavioral Descriptions in

VHDL

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

10-2

Outline

Constructs for Sequential Descriptions
Process Statement
Wait Statement
Control Statements: Conditional & Iterative
Behavioral Modeling of Mealy & Moore FSMs
Assertion for Behavioral Checks
Handshaking
Formatted I/O

10-3

Concurrent Versus Sequential
Statements
Sequential Statements

•Used Within Process Bodies or
SubPrograms
•Order Dependent
•Executed When Control is Transferred to
the Sequential Body

–Assert
–Signal Assignment
–Procedure Call
–Variable Assignment
–IF Statements
–Case Statement
–Loops
–Wait, Null, Next, Exit, Return

Concurrent Statements

•Used Within Architectural Bodies or
Blocks
•Order Independent
•Executed Once At the Beginning of
Simulation or Upon Some Triggered
Event

–Assert
–Signal Assignment
–Procedure Call (None of Formal
Parameters May be of Type
Variable)
–Process
–Block Statement
–Component Statement
–Generate Statement
–Instantiation Statement

10-4

Process Statement …

Main construct for Behavioral Modeling.
Other concurrent statements can be modeled by an
equivalent process.
Process statement is a concurrent construct which
performs a set of consecutive (Sequential) actions
once it is Activated. Thus, only Sequential Statements
are allowed within the Process Body.

Process_Label: PROCESS (Sensitivity_List)
Process_Declarations;

Begin
Sequential Statements;

END Process;

Optional Optional

Constant/Varia
bles No Signal
Declarations
Allowed

10-5

… Process Statement …

Unless sequential part is suspended
• It executes in zero real and delta time
• It repeats itself forever

10-6

… Process Statement
Whenever a SIGNAL in the Sensitivity_List of the Process
changes, the Process is Activated.
After executing the last statement, the Process is SUSPENDED
Until one (or more) Signal in the Process Sensitivity_List changes
value where it will be REACTIVATED.
A Process Statement Without a Sensitivity_List is ALWAYS
ACTIVE, i.e. After the Last Statement is Executed, execution
returns to the First Statement and Continues (Infinite Looping).
It is ILLEGAL to use WAIT-statement Inside a Process Which Has
a Sensitivity_List .
In case no Sensitivity_List exists, a Process may be activated or
suspended using the WAIT-statement.
Conditional and selective signal assignments are strictly
concurrent and cannot be used in a process.

10-7

Process Examples

Process
Begin

A<= `1`;
B <= `0`;

End Process;

Sequential Processing:
•First A is Scheduled to Have a Value `1`
•Second B is Scheduled to Have a Value `0`
•A & B Get their New Values At the SAME
TIME (1 Delta Time Later)

Process
Begin

A<= `1`;
IF (A= `1`) Then Action1;
Else Action2;
End IF;

End Process;

Assuming a `0` Initial Value of A,
•First A is Scheduled to Have a Value `1`
One Delta Time Later
•Thus, Upon Execution of IF_Statement,
A Has a Value of `0` and Action 2 will
be Taken.
•If A was Declared as a Process
Variable, Action1 Would Have Been
Taken

10-8

Wait Statement
Syntax of Wait Statement :
• WAIT; -- Forever
• WAIT ON Signal_List; -- On event on a signal
• WAIT UNTIL Condition; -- until event makes condition

true;
• WAIT FOR Time_Out_Expression;
• WAIT FOR 0 any_time_unit; -- Process Suspended for 1 delta

When a WAIT-statement is Executed, the process suspends and
conditions for its Reactivation are Set.
Process Reactivation conditions may be Mixed as follows
• WAIT ON Signal_List UNTIL Condition FOR Time_Expression ;
• wait on X,Y until (Z = 0) for 70 NS; -- Process Resumes

After 70 NS OR (in Case X or Y Changes Value and Z=0 is
True) Whichever Occurs First

• Process Reactivated IF:
• Event Occurred on the Signal_List while the Condition is True, OR
• Wait Period Exceeds ``Time_Expression ``

10-9

Positive Edge-Triggered D-FF Examples

D_FF: PROCESS (CLK)
Begin

IF (CLK`Event and CLK = `1`) Then
Q <= D After TDelay;

END IF;
END Process;

D_FF: PROCESS -- No Sensitivity_List
Begin

WAIT UNTIL CLK = `1`;
Q <= D After TDelay;

END Process;

D_FF: PROCESS (Clk, Clr) -- FF With Asynchronous Clear
Begin

IF Clr= `1` Then Q <= `0` After TD0;
ELSIF (CLK`Event and CLK = `1`) Then Q <= D After TD1;
END IF;

END Process;

10-10

Sequential Statements

CONTROL STATEMENTS

Conditional

• IF statements

• CASE statement

Iterative

• Simple Loop

• For Loop

•While Loop

10-11

Conditional Control – IF Statement
Syntax: 3-Possible Forms
(i) IF condition Then

statements;
End IF;

(ii) IF condition Then
statements;

Else
statements;

End IF;
(iii) IF condition Then

statements;
Elsif condition Then

statements;
……….

Elsif condition Then
statements;

End IF;

10-12

Conditional Control – Case Statement

Syntax:
(i) CASE Expression is

when value => statements;
when value1 | value2| ...|valuen => statements;
when discrete range of values => statements;
when others => statements;

End CASE;

Values/Choices should not overlap (Any value of the
Expression should Evaluate to only one Arm of the Case
statement).
All possible choices for the Expression should be
accounted for Exactly Once.

10-13

Conditional Control – Case Statement

If ``others`` is used, it must be the last ``arm`` of the CASE
statement.
There can be Any Number of Arms in Any Order (Except
for the others arm which should be Last)

CASE x is
when 1 => y :=0;
when 2 | 3 => y :=1;
when 4 to 7 => y :=2;
when others => y :=3;

End CASE;

10-14

Loop Control …

Simple Loops
Syntax:

[Loop_Label:] LOOP
statements;

End LOOP [Loop_Label];
The Loop_Label is Optional
The exit statement may be used to exit the Loop. It has
two possible Forms:
• exit [Loop_Label]; -- This may be used in an if statement
• exit [Loop_Label] when condition;

10-15

…Loop Control
Process

variable A : Integer :=0;
variable B : Integer :=1;

Begin
Loop1: LOOP

A := A + 1;
B := 20;
Loop2: LOOP

IF B < (A * A) Then
exit Loop2;

End IF;
B := B - A;
End LOOP Loop2;

exit Loop1 when A > 10;
End LOOP Loop1;

End Process;

10-16

FOR Loop

Syntax:
[Loop_Label]: FOR Loop_Variable in range LOOP

statements;
End LOOP Loop_Label;

Process
variable B : Integer :=1;

Begin
Loop1: FOR A in 1 TO 10 LOOP

B := 20;
Loop2: LOOP

IF B < (A * A) Then
exit Loop2;

End IF;
B := B - A;

End LOOP Loop2;
End LOOP Loop1;

End Process;

Need Not Be Declared

10-17

WHILE Loop

Syntax:
[Loop_Label]: WHILE condition LOOP

statements;
End LOOP Loop_Label;

Process
variable B:Integer :=1;

Begin
Loop1: FOR A in 1 TO 10 LOOP

B := 20;
Loop2: WHILE B < (A * A) LOOP

B := B - A;
End LOOP Loop2;

End LOOP Loop1;
End Process;

10-18

Next & Null Statements

Syntax:
Next [Loop_Label] [When Condition];
• Skip Current Loop Iteration When Condition is True
• If Loop_Label is Absent, innermost Loop is Skipped

When Condition is True
• If Condition is Absent, Appropriate Loop Iteration is

Skipped.
• Applicable for For Loops

Null Statement
Syntax: Null;

• Does Nothing
• Useful in Case Statements If No Action Is Required.

10-19

A Moore 1011 Detector using Wait

ENTITY moore_detector IS
PORT (x, clk : IN BIT;
z : OUT BIT);
END moore_detector;

•Can use WAIT in a Process
statement to check for events
on clk

ARCHITECTURE behavioral_state_machine OF moore_detector IS
TYPE state IS (reset, got1, got10, got101, got1011);
SIGNAL current : state := reset;
BEGIN

10-20

A Moore 1011 Detector using Wait
PROCESS
BEGIN
CASE current IS
WHEN reset => WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got1; ELSE current <= reset; END IF;
WHEN got1 => WAIT UNTIL clk = '1';

IF x = '0' THEN current <= got10; ELSE current <= got1; END IF;
WHEN got10 => WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got101; ELSE current <= reset; END IF;
WHEN got101 => WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got1011; ELSE current <= got10; END IF;
WHEN got1011 => z <= '1'; WAIT UNTIL clk = '1';

IF x = '1' THEN current <= got1; ELSE current <= got10; END IF;
END CASE;
WAIT FOR 1 NS; z <= '0';
END PROCESS;
END behavioral_state_machine;

10-21

A Moore 1011 Detector without Wait
ARCHITECTURE most_behavioral_state_machine OF moore_detector IS
TYPE state IS (reset, got1, got10, got101, got1011);
SIGNAL current : state := reset;
BEGIN
PROCESS (clk)
BEGIN
IF (clk = '1' and CLK’Event) THEN
CASE current IS
WHEN reset =>

IF x = '1' THEN current <= got1; ELSE current <= reset; END IF;
WHEN got1 =>

IF x = '0' THEN current <= got10; ELSE current <= got1; END IF;
WHEN got10 =>

IF x = '1' THEN current <= got101; ELSE current <= reset; END IF;
WHEN got101 =>

IF x = '1' THEN current <= got1011; ELSE current <= got10; END IF;
WHEN got1011 =>

IF x = '1' THEN current <= got1; ELSE current <= got10; END IF;
END CASE;
END IF;
END PROCESS;
z <= '1' WHEN current = got1011 ELSE '0';
END most_behavioral_state_machine;

10-22

Generalized VHDL Mealy Model
Architecture Mealy of fsm is

Signal D, Y: Std_Logic_Vector(...); -- Local Signals
Begin
Register: Process(Clk)

Begin
IF (Clk`EVENT and Clk = `1`) Then Y <= D;
End IF;

End Process;
Transitions: Process(X, Y)

Begin
D <= F1(X, Y);

End Process;
Output: Process(X, Y)

Begin
Z <= F2(X, Y);

End Process;
End Mealy;

X
F2

F1

Z

Register

Y

D

10-23

Generalized VHDL Moore Model
Architecture Moore of fsm is

Signal D, Y: Std_Logic_Vector(...); -- Local Signals
Begin
Register: Process(Clk)

Begin
IF (Clk`EVENT and Clk = `1`) Then Y <= D;
End IF;

End Process;
Transitions: Process(X, Y)

Begin
D <= F1(X, Y);

End Process;
Output: Process(Y)

Begin
Z <= F2(Y);

End Process;
End Moore;

X

F2

F1

Z

Register
Y D

10-24

FSM Example …

Entity fsm is
port (Clk, Reset : in Std_Logic;

X : in Std_Logic_Vector(0 to 1);
Z : out Std_Logic_Vector(1 downto 0));

End fsm;

Architecture behavior of fsm is
Type States is (st0, st1, st2, st3);
Signal Present_State, Next_State : States;

Begin
reg: Process(Reset, Clk)
Begin

IF Reset = `1` Then
Present_State <= st0; -- Machine Reset to st0

elsIF (Clk`EVENT and Clk = `1`) Then
Present_State <= Next_state;

End IF;
End Process;

10-25

… FSM Example

Transitions: Process(Present_State, X)
Begin

CASE Present_State is
when st0 =>

Z <= ``00``;
IF X = ``11`` Then Next_State <= st0;
else Next_State <= st1; End IF;

when st1 =>
Z <= ``01``;
IF X = ``11`` Then Next_State <= st0;
else Next_State <= st2; End IF;

when st2 =>
Z <= ``10``;
IF X = ``11`` Then Next_State <= st2;
else Next_State <= st3; End IF;

when st3 =>
Z <= ``11``;
IF X = ``11`` Then Next_State <= st3;
else Next_State <= st0; End IF;

End CASE;
End Process;

End behavior;

10-26

Using Wait for Two-Phase Clocking

c1 <= not c1 after 500ns;
phase2: PROCESS
BEGIN
WAIT UNTIL c1 = '0';
WAIT FOR 10 NS;
c2 <= '1';
WAIT FOR 480 NS;
c2 <= '0';
END PROCESS phase2;
. . .

10-27

Assert Statement …

Syntax:
ASSERT assertion_condition REPORT
"reporting_message" SEVERITY severity_level;
Semantics
• Make sure that assertion_condition is true
• Otherwise report "reporting message" then
• Take the severity_level action

Severity: FAILURE ERROR WARNING NOTE
Use assert to flag violations
Use assert to report events
Can be sequential or concurrent

10-28

… Assert Statement

BEGIN
dff: PROCESS (rst, set, clk)
BEGIN
ASSERT
(NOT (set = '1' AND rst = '1'))
REPORT
"set and rst are both 1"
SEVERITY NOTE;
IF set = '1' THEN
state <= '1' AFTER sq_delay;
ELSIF rst = '1' THEN
state <= '0' AFTER rq_delay;
ELSIF clk = '1' AND clk'EVENT THEN
state <= d AFTER cq_delay;
END IF;
END PROCESS dff;
q <= state;
qb <= NOT state;
END behavioral;

•Conditions are checked
only when process is
activated
•Make sure that set='1'
AND rst='1' does not
happen
•Severity NOTE issues
message

10-29

Checking for Setup & Hold Time …

Setup check in English:
When (clock changes from zero to 1),
if (data input has not been stable at least for the amount of the setup time),
then a setup time violation has occurred.

Setup check in VHDL:
(clock='1' AND NOT clock'STABLE)
AND
(NOT data'STABLE (setup_time)

•When the clock changes, check for
stable data
•Check is placed after clock changes

10-30

… Checking for Setup & Hold Time …

Hold check in English:
When (there is a change on the data input)
if (logic value on the clock is '1') and
(clock has got a new value more recent than the amount of hold time)
then a hold time violation has occurred.

Hold check in VHDL:
(data'EVENT)
AND
(clock='1')
AND
(NOT clock'STABLE (hold_time))

•When data changes while clock is '1', check for stable clock
•Check is placed after data changes

10-31

… Checking for Setup & Hold Time …

ENTITY d_sr_flipflop IS
GENERIC (sq_delay, rq_delay, cq_delay : TIME := 6 NS;
set_up, hold : TIME := 4 NS);
PORT (d, set, rst, clk : IN BIT; q, qb : OUT BIT);
BEGIN
ASSERT (NOT (clk = '1' AND clk'EVENT AND NOT d'STABLE(set_up)))
REPORT "Set_up time violation"
SEVERITY WARNING;
ASSERT (NOT (d'EVENT AND clk = '1' AND NOT clk'STABLE(hold)))
REPORT "Hold time violation"
SEVERITY WARNING;
END d_sr_flipflop;

•Concurrent assertion statements
•Can be placed also in the architecture

10-32

… Checking for Setup & Hold Time

ARCHITECTURE behavioral OF d_sr_flipflop IS
SIGNAL state : BIT := '0';
BEGIN
dff: PROCESS (rst, set, clk)
BEGIN
ASSERT (NOT (set = '1' AND rst = '1'))
REPORT "set and rst are both 1"
SEVERITY NOTE;
IF set = '1' THEN state <= '1' AFTER sq_delay;
ELSIF rst = '1' THEN state <= '0' AFTER rq_delay;
ELSIF clk = '1' AND clk'EVENT THEN state <= d AFTER cq_delay;
END IF;
END PROCESS dff;
q <= state; qb <= NOT state;
END behavioral;

10-33

Handshaking …

-- start the following when ready to
send data
data_lines <= newly_prepared_data;
data_ready <= '1';
WAIT UNTIL accepted = '1';
data_ready <= '0';
-- can use data_lines for other purposes

-- start the following when
ready to accept data
WAIT UNTIL data_ready = '1';
accepted <= '1';

-- start processing the newly
received data
WAIT UNTIL data_ready = '0';
accepted <= '0';

System A System B

10-34

… Handshaking …
Use handshaking mechanism in an interface
A prepares 4 bit data, B needs 16 bit data
Create interface system I

Talk to A to get data, talk to B to put data

ENTITY system_i IS
PORT (in_data : IN BIT_VECTOR (3 DOWNTO 0);
out_data : OUT BIT_VECTOR (15 DOWNTO 0);
in_ready, out_received : IN BIT; in_received, out_ready : OUT BIT);
END system_i;

10-35

… Handshaking …
ARCHITECTURE waiting OF system_i IS
SIGNAL buffer_full, buffer_picked : BIT := '0';
SIGNAL word_buffer : BIT_VECTOR (15 DOWNTO 0);
BEGIN
a_talk: PROCESS
BEGIN
. . .
-- Talk to A, collect 4 4-bit data, keep a count
-- When ready, pass 16-bit data to b_talk
. . .
END PROCESS a_talk;
b_talk: PROCESS
BEGIN
. . .
-- Wait for 16-bit data from a_talk
-- When data is received, send to B using proper
handshaking
. . .
END PROCESS b_talk;
END waiting;

•a_talk process &
b_talk process talk to
each other
•Use buffer_full,
buffer_picked, and
word_buffer for a_talk
and b_talk
communication

10-36

… Handshaking …

A_talk: PROCESS
VARIABLE count : INTEGER RANGE 0 TO 4 := 0;
BEGIN
WAIT UNTIL in_ready = '1';
count := count + 1;
CASE count IS
WHEN 0 => NULL;
WHEN 1 => word_buffer (03 DOWNTO 00) <= in_data;
WHEN 2 => word_buffer (07 DOWNTO 04) <= in_data;
WHEN 3 => word_buffer (11 DOWNTO 08) <= in_data;
WHEN 4 => word_buffer (15 DOWNTO 12) <= in_data;

buffer_full <= '1';
WAIT UNTIL buffer_picked = '1';
buffer_full <= '0'; count := 0;

END CASE;
in_received <= '1';
WAIT UNTIL in_ready = '0';
in_received <= '0';
END PROCESS a_talk;

10-37

Handshaking …

b_talk: PROCESS
BEGIN
-- communicate with a_talk process
IF buffer_full = '0' THEN WAIT UNTIL buffer_full = '1'; END IF;
out_data <= word_buffer;
buffer_picked <= '1';
WAIT UNTIL buffer_full = '0';
buffer_picked <= '0';
-- communicate with system B
out_ready <= '1';
WAIT UNTIL out_received = '1';
out_ready <= '0';
END PROCESS b_talk;

The IF buffer_full = ‘0’ statement is used so that the WAIT Until
does not hold the process if buffer_full is already ‘1’ when this
statement is reached

10-38

Formatted I/O …

USE STD.TEXTIO.ALL;
l is LINE, f is FILE
The following functions provided:
• READLINE (f, l)
• READ (l, v)
• WRITE (l, v),
• WRITELINE (f, l)
• ENDFILE (f)

READ or WRITE can read values of type:
• BIT, BIT_VECTOR, BOOLEAN, CHARACTER, INTEGER,

REAL, STRING, TME

10-39

… Formatted I/O …

TYPE state IS (reset, got1, got10, got101);
TYPE state_vector IS ARRAY (NATURAL RANGE <>) OF state;
FUNCTION one_of (sources : state_vector) RETURN state IS
USE STD.TEXTIO.ALL;
VARIABLE l : LINE;
FILE flush : TEXT IS OUT "/dev/tty";
BEGIN
FOR i IN sources'RANGE LOOP
WRITE (l, state’IMAGE(sources(I)), LEFT, 7);
END LOOP;
WRITELINE (flush, l);
RETURN sources (sources'LEFT);
END one_of;

•Add screen output to resolution function
•The ‘IMAGE type attribute translates a state to its corresponding string
•The keyword LEFT specifies left justification
•7 specifies the string length

10-40

… Formatted I/O

USE STD.TEXTIO.ALL;
PROCEDURE display (SIGNAL value1,
value2 : BIT) IS
FILE flush : TEXT OPEN APPEND_MODE
is "debug.txt";
VARIABLE filler : STRING (1 TO 4) := " ...";
VARIABLE l : LINE;
BEGIN
WRITE (l, NOW, RIGHT, 8, NS);
IF value1'EVENT THEN
WRITE (l, value1, RIGHT, 3);
WRITE (l, filler, LEFT, 0);
ELSE
WRITE (l, filler, LEFT, 0);
WRITE (l, value2, RIGHT, 3);
END IF;
WRITELINE (flush, l);
END display;

•An EVENT on value1 or value2
puts the following in l:

NOW
•An EVENT on value1 puts the
following in l:

v1 ...
•An EVENT on value2 puts the
following in l:

... v2
•WRITELINE writes:

time v1 ...
time ... v2

