
1

COE 405
Hardware Design

Environments

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

1-2

Outline

Welcome to COE 405
Digital System Design
Design Domains and Levels of Abstractions
Synthesis Process
Objectives of VHDL
Styles in VHDL
Design Flow in VHDL
Simulation Process

2

1-3

Welcome to COE 405

Catalog Description
• Design methodology. Hardware modeling basics. Modeling

concurrency and timing aspects. Behavioral, structural, and
data flow level modeling using hardware description
languages (HDLs). System level modeling and design of
practical processors, controllers, arithmetic units, etc.
Translation of instruction sets to hardware models for
software emulation. Case studies.

Prerequisite: COE 308 or consent of instructor
Instructor Dr. Aiman H. El-Maleh. Room: 22/318
Phone: 2811 Email: aimane@ccse.kfupm.edu.sa
Office Hours SMW 10:00-10:50, and by appointment

1-4

Course Objectives

After successfully completing the course, students will
be able to:
• Master the hardware description language, VHDL, for the

design (specification, modeling, simulation, and synthesis) of
digital systems using programmable logic or VLSI
components.

• Design complete digital systems starting from the concept,
advancing through the modeling, simulation, synthesis, and
test, by using different styles in VHDL, namely structural,
dataflow, and behavioral, for describing the architecture.

3

1-5

Course Learning Outcomes

Ability to design a digital system based on VHDL
including modeling, simulation, and synthesis.
Ability to use CAD tools for the analysis and
verification of digital designs.
Ability to demonstrate self-learning capability.
Ability to work in a team.

1-6

Text Book

Zainalabedin Navabi, “VHDL: Analysis and Modeling of
Digital Systems”, McGraw-Hill, Inc., 2nd edition, 1998

4

1-7

Grading Policy

Assignments 15%
Quizzes 10%
Exam I 15% (Th., Mar. 29, 1:00 PM)
Exam II 20% (Th. , May 10, 1:00 PM)
Project 20%
Final 20%
• Attendance will be taken regularly.
• Excuses for officially authorized absences must be presented no

later than one week following resumption of class attendance.
• Late assignments will be accepted (upto 3 days) but you will be

penalized 10% per each late day.
• A student caught cheating in any of the assignments will get 0 out of

15%.
• No makeup will be made for missing Quizzes or Exams.

1-8

Course Content

Structured Design Methodologies: Digital System
Design, Abstraction hierarchy, Types of Behavioral
Descriptions, Digital Design Space & Design
Decomposition.
VHDL Quick Overview: Design Partitioning & Top-
Down Design, Design Entities, Signals vs. Variables,
Architectural Bodies, Different design views,
Behavioral model, Dataflow model, Structural model.
VHDL Language Basics: Lexical Elements, Data Types
(Scalars & Composites), Type Conversion, Attributes,
Classes of objects. Operators & Precedence,
Overloading.

5

1-9

Course Content

Signals, Delays & Concurrency: Variables vs. Signals,
Sequential vs. Concurrent Constructs, Signal
Propagation Delay & Delay types, Transactions, Events
and Transaction Scheduling, Signal Attributes.
Design & Modeling Tools: Tutorials on available
Simulators and Design Tools.
Structural Models: Configuration Statement, Modeling
Iterative/Regular Structures.
Design Organization & Parameterization: Packages &
Libraries, Design Parameterization, Design
Configuration & General Purpose Test Bench.

1-10

Course Content

Dataflow Models: Concurrent Signal Assignment,
Block statements, Guards, Resolution Functions,
Resolved Signals and Signal Kinds, Data Flow Moore &
Mealy Models, Data & Control Path Data Flow Models.
Behavioral Models: Process & Wait Statements, Assert
Statement, General Algorithmic Model, Moore and
Mealy Machine Algorithmic Models, Data & Control
Path Design.
Writing Test Benches: Types of Test Benches,
Examples.
Introduction to VHDL Synthesis: Combinational,
Sequential Logic Synthesis, State Machine Synthesis.
VHDL Coding Styles for Synthesis.
CPU Design Example: Behavioral Modeling of CPU,
Datapath and Control Unit Modeling, CPU-Memory
Interface.

6

1-11

Digital System Design

Realization of a specification subject to the
optimization of
• Area (Chip, PCB)

• Lower manufacturing cost
• Increase manufacturing yield
• Reduce packaging cost

• Performance
• Propagation delay (combinational circuits)
• Cycle time and latency (sequential circuits)
• Throughput (pipelined circuits)

• Power dissipation
• Testability

• Earlier detection of manufacturing defects lowers overall cost
• Design time (time-to-market)

• Cost reduction
• Be competitive

1-12

Digital System Design Cycle

Design Idea System Specification

Behavioral (Functional) Design

Logic Design

Circuit Design

Physical Design

Fabrication & Packaging

Architecture Design

Pseudo Code, Flow Charts

Bus & Register Structure

Netlist (Gate & Wire Lists)

Transistor List

VLSI / PCB Layout

7

1-13

Architecture Design

REG1 REG2

Main Logic
 Unit

REG3

Logic

Finite
State

Machine

Data Path
Control

Path

1-14

Architecture Design Example

Problem: It is required to design an 8-bit adder
• The two operands are stored in two 8-bit shift registers A and

B
• At the end of the addition operation, the sum must be stored

in the A register.
• The contents of the B register must not be destroyed.
• The design must be as economical as possible in terms of

hardware.

8

1-15

8-bit Adder Possible Solutions

There are numerous ways to design the above circuit,
some of which are listed below.
• Use an 8-bit ripple-carry adder
• Use an 8-bit carry look-ahead adder.
• Use two 4-bit carry look-ahead adders and ripple the carry

between stages.
• Use a 1-bit adder and perform the addition serially in 8 clock

cycles.

1-16

8-bit Adder Selected Design

Since it is specified that the hardware cost must be
minimum, the serial adder design is selected.

Start
Clock

Add

MA

MB
SB
SA
RD
RC

Read A

Read B

MUX A

MA

MUX B

MB

SA

SB

Din FA

Q D

S

CoutCin

(a) (b)

9

1-17

Data Path & Control Unit of Serial Adder

Data path consists of
• Two 8-bit shift registers
• A full adder
• A D-flip flop
• Two multiplexers
• 3-bit Counter

Control unit generates the following signals
• SA to Shift the register A right by one bit
• SB to shift the register B right by one bit
• MA to control multiplexer A
• MB to control multiplexer B
• RD to Reset the D flip-flop
• RC to Reset the counter

1-18

Control Algorithm of Serial Adder

Forever do
While (START = 0) skip;

Reset the D flip-flop and the counter;
Set MA and MB to 0;

Repeat
Shift registers A and B right by one
counter = counter + 1;

Until counter = 8;

10

1-19

Observations

Design involves trade-offs between
• Cost
• Performance
• Testability
• Power dissipation
• Fault tolerance
• Ease of design
• Ease of making changes to the design.

Serial is cheap but slow, parallel fastest in terms of
performance but most costly.
The different ways we can think of building an 8-bit
adder constitutes what is known as design space (at a
particular level of abstraction).
• Each method of implementation is called a point in the design

space.

1-20

Behavioral or High-Level Synthesis

The automatic generation of data path and control unit
is known as high-level synthesis.
Tasks involved in HLS are scheduling and allocation.
Scheduling distributes the execution of operations
throughout time steps.
Allocation assigns hardware to operations and values.

• Allocation of hardware cells include functional unit
allocation, register allocation and bus allocation.

• Allocation determines the interconnections required.

11

1-21

Behavioral Description and its Control
Data Flow Graph (CDFG)

X = W + (S * T)
Y = (S * T) + (U * V)

*

+

*

+

W S T U V

X Y

(a)

CDFG

(b)

*

*+

+

W S T U V

X Y

1

2

3

(c)

Scheduled CDFG

1-22

Resulting Architecture Design

MUX

X Y W

+

Z MUXMUX

*

S U T V

Bus 1 Data Path

12

1-23

Digital System Complexity

1-24

How to Deal with Design Complexity?

Moore’s Law: Number of transistors that can be
packed on a chip doubles every 18 months while the
price stays the same.
Hierarchy: structure of a design at different levels of
description.
Abstraction: hiding the lower level details.

13

1-25

Design Hierarchy

Top
–Down

Bottom
–UP

1-26

Abstractions

An Abstraction is a simplified model of some Entity
which hides certain amount of the Internal details of
this Entity
Lower Level abstractions give more details of the
modeled Entity.
Several levels of abstractions (details) are commonly
used:
• System Level
• Chip Level
• Register Level
• Gate Level
• Circuit (Transistor) Level
• Layout (Geometric) Level

More Details

(Less Abstract)

14

1-27

Design Domains &
Levels of Abstraction

Designs can be expressed / viewed in one of three
possible domains
• Behavioral Domain (Behavioral View)
• Structural/Component Domain (Structural View)
• Physical Domain (Physical View)

A design modeled in a given domain can be
represented at several levels of abstraction (Details).

1-28

Three Abstraction Levels of Circuit
Representation

Architectural level
• Operations implemented

by resources.

Logic level
• Logic functions

implemented by gates.

Geometrical level
• Devices are geometrical

objects.

15

1-29

Modeling Views

Behavioral view
• Abstract function.

Structural view
• An interconnection of parts.

Physical view
• Physical objects with size

and positions.

1-30

Levels of Abstractions & Corresponding
Views

16

1-31

Design Domains &
Levels of Abstraction

 Design Domain

 Behavioral Structural Physical
Abstraction Level
System English Specs Computer,

Disk Units,
Radar, etc.

Boards, MCMs,
Cabinets,
Physical
Partitions

Chip Algorithms,
Flow Charts

Processors,
RAMs, ROMs

Clusters, Chips,
PCBs

Register Data Flow, Reg.
Transfer

Registers,
ALUs,
Counters,
MUX, Buses

Std. Cells, Floor
Plans

Gate Boolean
Equations

AND, OR,
XOR, FFs, etc

Cells, Module
Plans

Circuit (Tr) Diff, and
element
Equations

Transistors, R,
C, etc …

Mask Geometry
(Layout)

1-32

Gajski and Kuhn's Y Chart

17

1-33

Design Methods

Full custom
• Maximal freedom
• High performance blocks
• Slow

Semi-custom
• Gate Arrays

• Mask Programmable (MPGAs)
• Field Programmable (FPGAs))

• Standard Cells
• Silicon Compilers & Parametrizable Modules (adder,

multiplier, memories)

1-34

Design vs. Synthesis

Synthesis
• Process of transforming H/W from one level of abstraction to

a lower one.

Synthesis may occur at many different levels of
abstraction
• Behavioral or High-level synthesis
• Logic synthesis
• Layout synthesis

Design
• A Sequence of synthesis steps down to a level of abstraction

which is manufacturable.

18

1-35

Synthesis Process

Behavioral
Domain

Structural
Domain

System

Chip

Register

Logic
Synthesis

Logic

Circuit
(Transistor)

Mask Layout
Geometry

Gate

Circuit

Layout

Layout
Synthesis

English Specs

Algorithmic
Desc.

Data Flow
(RTL)

Natural Language
Synthesis

Algorithmic Synthesis, or
High-Level Synthesis

1-36

Circuit Synthesis

Architectural-level synthesis
• Determine the macroscopic structure

• Interconnection of major building blocks.

Logic-level synthesis
• Determine the microscopic structure

• Interconnection of logic gates.

Geometrical-level synthesis (Physical design)
• Placement and routing.
• Determine positions and connections.

19

1-37

Design Automation & CAD Tools

Design Entry (Description) Tools
• Schematic Capture
• Hardware Description Language (HDL)

Simulation (Design Verification) Tools
• Simulators (Logic level, Transistor Level, High Level

Language “HLL”)

Synthesis Tools
Formal Verification Tools
Design for Testability Tools
Test Vector Generation Tools

1-38

Hardware Description Languages

HDLs are used to describe the hardware for the
purpose of modeling, simulation, testing, design, and
documentation.
• Modeling: behavior, flow of data, structure
• Simulation: verification and test
• Design: synthesis

Two widely-used HDLs today
• VHDL: VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language (IEEE standard)
• Verilog (from Cadence, now IEEE standard)

20

1-39

Objectives of VHDL

Provide a unified notation to describe Electronic Systems (digital
hardware) at various levels of abstractions.
Standardization of documentation
• To support the communication of design data

System design time and cost
• reduced ambiguity in specification of design interfaces and design

functions
• reusability of existing designs

Open-system CAE tools
• can change CAE system without losing use of existing designs
• elimination of language translators

Improved integration of multi-vendor designs
• shared design databases become possible
• standard cells, behavioral models

1-40

VHDL Requirements

Support for design hierarchy
Library support
Sequential statement
Generic design
Type declaration and usage
Use of subprograms
Timing control
Structural specification

21

1-41

History of VHDL

Created by DoD to document military designs for
portability
IEEE standard 1076 (VHDL) in 1987
Revised IEEE standard 1076 (VHDL) in 1993
IEEE standard 1164 (object types standard) in 1993
IEEE standard 1076.3 (synthesis standard) in 1996

Start Of
VHDL Development

1981

1985

First Publication

(Base-Line)
1987

1993

First Publication Of
VHDL Standard

Publication Of Revised
VHDL Standard

1-42

VHDL Advantages
Modular
Hierarchical, allows design description:
• TOP - DOWN
• BOTTOM - UP

Portable
Can describe the Same design Entity using more than one view
(Domain):
• The Behavioral View (e.g. as an algorithm, Register-Transfer

(Data Flow), Input-Output Relations, etc)
• The Structural View.

This allows investigation of design alternatives of the same
Entity.
It also allows delayed detailed Implementations.
Can model systems at various levels of abstraction (System, chip
RTL, Logic (Gate))
VHDL can be made to simulate timing at reasonable accuracy.

22

1-43

Styles in VHDL

Behavioral
• High level, algorithmic, sequential execution
• Hard to synthesize well
• Easy to write and understand (like high-level language code)

Dataflow
• Medium level, register-to-register transfers, concurrent

execution
• Easy to synthesize well
• Harder to write and understand (like assembly code)

Structural
• Low level, netlist, component instantiations and wiring
• Trivial to synthesize
• Hardest to write and understand (very detailed and low level)

1-44

Design Flow in VHDL

Define the design requirements
Describe the design in VHDL
• Top-down, hierarchical design approach
• Code optimized for synthesis or simulation

Simulate the VHDL source code
• Early problem detection before synthesis

Synthesize, optimize, and fit (place and route) the design for a
device
• Synthesize to equations and/or netlist
• Optimize equations and logic blocks subject to constraints
• Fit into the components blocks of a given device

Simulate the post-layout design model
• Check final functionality and worst-case timing

Program the device (if PLD) or send data to ASIC vendor

23

1-45

Design Tool Flow …

VHDL
Design

Test Bench/
Stimulus

Source Simulation Software

Waveform Data File

Synthesis Software

Device
Selection

Synthesis
Directives

Equations or
Netlist

To Fitter Software

Functional Simulation

1-46

… Design Tool Flow

Fitter (Place & Route) Software

Device
Programming

File
or ASIC Data

Report
File

Equations or
Netlist

From Synthesis
Test Bench/

Stimulus

Post-fit Simulation Software

Waveform Data FilePost-fit
Model

Full-timing Simulation

24

1-47

Simulation Process

1-48

Simulation Types

Oblivious and Event-driven simulation

25

1-49

Oblivious Simulation

Need a tabular netlist for oblivious simulation
Simulate fixed time intervals
Update table values at each interval

1-50

Event-Driven Simulation

Evaluate circuit only when events occur
Offers a faster simulation for digital systems
VHDL is an event driven simulation

