COE 405, Term 122

Design & Modeling of Digital Systems

Quiz# 4

Date: Monday, April 29, 2013

Q.1. Consider the logic network below with inputs $\{a, b, c, d, e, f\}$ and output $\{X\}$:

Assume that the delay of a gate is related to the number of its inputs i.e. the delay of a 2-input AND gate is 2. Also, assume that the input data-ready times are zero for all inputs except input *a*, which has a data-ready time of 2.

- (i) Compute the data ready times and slacks for all vertices in the network.
- (ii) Determine the topological critical path.
- (iii) Suggest an implementation of the function X to reduce the delay of the circuit to the minimum possible and determine the maximum propagation delay in the optimized circuit. Has the area been affected?

ta = 2	$T_a = min(4-2,4-2) = 1$	2 Sa = 2 - 2 = c
66=0	$E_{b} = min(4-2)4-2)=2$	Sb = 2 - 0 = 2
tc=0	$\overline{L}_{c} = mm(4-2,4-2) = 2$	Sc = 2 - c =
td=0	$\overline{t}_d = mm(4-2,4-2) = 2$	Sd = 2 - 0 = 2
te = 0	$\overline{fe} = \delta$	Se = e - o = i
df = 0	$\overline{l_f} = 8$	Sf = 8 - 0 =
$t_9 = 4$	$\overline{t_0} = 4$	50 = 4-4=0
+h=4	$\overline{t_h} = 4$	Sh = 4 - 1 = 0
$\frac{1}{F_{1}}$	$\widehat{E_i} = 4$	$S_i = 4 - 2 = 2$
$t_i = 2$	Ēj = 4	5j = 4-2=2
$t\kappa = 8$	$\overline{f_{K}} = 8$	$S_{k} = 8 - 8 = 8$
		$S_X = I_{-} I_{-} I_{-}$

The resulting deby 15 6. Number of literals 15 10. Thus, we have improved the delay Thus, we have improved the delay from 11 to 6 and area from 15 literals to 10 literals.

- Q.2. Determine possible circuits that will be synthesize by each of the following modules:
 - (i) module m1 (output y, input e1, e2, x1, x2); assign y = e1?x1:e2?x2:y; endmodule

 (ii) module m2 (output y, input e1, e2, x1, x2); assign y = e1?x1:e2?x2:1'bx; endmodule

(iii) module m3 #(parameter size=2)(
 output reg y,
 input [size-1:0] a, b);
 integer k;
 always @ (a, b) begin
 for (k=size-1; k>=0; k=k-1) begin
 if (a[k] != b[k])
 y = 0;
 end
 end
 end
endmodule

(v) module m5 #(parameter size=3)(
 output reg y,
 input [size-1:0] x);
 integer k;
 always @ (x) begin
 y = 1;
 for (k=1; k<size; k=k+1)
 y = y & x[k];
 if (!x[0]) y = 1'bz;
 end
 endmodule</pre>

(vi)module m6 (
 output reg y,
 input x1, x2, x3);
 always @ (x1, x2, x3) begin
 if (x1) y = x2 ^ x3;
 end
 endmodule

J