Name: KEY

Id#

COE 405, Term 122
 Design & Modeling of Digital Systems

Quiz# 3

Date: Monday, March 15, 2013
Q.1. The ASMD chart given below describes a state machine that counts 1’s in a word and terminates activity as soon as possible. The machine remains in its reset state, S_idle, until an external agent asserts start. This action asserts the output, load_temp, which will cause data to be loaded into register temp when the state makes a transition to S_counting at the next active edge of clk. The machine remains in S_counting while temp contains a 1. Two actions occur concurrently at each subsequent clock: (1) temp is shifted towards its LSB and (2) temp[0] is added to bit_count. When temp finally has a 1 in only the LSB, the machine’s state moves to S_waiting, where done is asserted. The state remains in S_waiting until start is reasserted. Assume that when the synchrnous reset input is asserted the machine is reset to the state S_idle and bit_count and temp are initialized to 0.
[image: image1.jpg]data

Datapath_Unit

[word _size-1: 0] |

temp_gt_1

start =>|
busy =

done

Control_Unit

load_temp |

shift_ad{

clear

clk

Datapath_Logic

reset_

temp_Q
12 temp <= data
> Bit_Counter 1
[counter_size-1: 0] load_temp
/
bit_count
YYy
S_counting

bit_count <= bit_count + temp[0]

temp <= temp >> 1 \!

/ busy, shift add

S_waztmg
/ done

¥

load_temp
clear

start

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

temp <= data

bit_count <=0

(i) Write a Verilog model to model the data-path.

module OnesCount_DPU #(parameter word_size=4, counter_size=3)(

output [counter_size-1: 0] bit_count,

output temp_gt_1,

input [word_size-1:0] data,

input load_temp, shift_add, clear, clock, reset

);

reg [word_size-1:0] temp;

reg [counter_size-1:0] counter;

assign bit_count = counter;

assign temp_gt_1 = | temp[word_size-1:1];

always @ (posedge clock)

 if (load_temp) temp <= data;

 else if (shift_add) temp <= temp >> 1;

always @ (posedge clock)

 if (reset || clear) counter <= 0;

 else if (shift_add) counter <= counter + temp[0];

endmodule

(ii) Write a Verilog model to model the control unit based on the ASMD chart i.e. not based on equations.

module OnesCount_CU (output reg load_temp,

shift_add, clear, done, busy,

input start, temp_gt_1, clock, reset);

parameter S_idle = 2'b00, S_counting = 2'b01, S_waiting = 2'b10;

reg [1:0] state, next_state;

 always @(posedge clock)

 if (reset) state <= S_idle;

 else state <= next_state;

 always @(state, start, temp_gt_1) begin

 load_temp=0; shift_add=0; clear=0; done=0; busy=0;

 case (state)

 S_idle:

 if (start) begin

 load_temp = 1;

 next_state = S_counting;

 end

 else next_state = S_idle;

 S_counting: begin

 shift_add = 1; busy = 1;

 if (temp_gt_1) next_state = S_counting;

 else next_state = S_waiting;

 end

 S_waiting: begin

 done = 1;

 if (start) begin

 load_temp = 1; clear = 1;

 next_state = S_counting;

 end

 else next_state = S_waiting;

 end

 default: begin

next_state = 2'bxx;

load_temp='bx; shift_add='bx; clear='bx; done='bx; busy='bx;

 end

 endcase

 end

endmodule

(iii) Write a Verilog model to model the whole design.
module OnesCount #(parameter word_size=4, counter_size=3)(

output [counter_size-1: 0] bit_count,

output done, busy,

input [word_size-1:0] data,

input start, clock, reset

);

OnesCount_CU M1 (load_temp,shift_add, clear, done, busy, start, temp_gt_1, clock, reset);

OnesCount_DPU M2 (bit_count, temp_gt_1, data, load_temp, shift_add, clear, clock, reset);

endmodule

