
## COE 405, Term 122

## **Design & Modeling of Digital Systems**

## Quiz# 3

Date: Monday, March 15, 2013

**Q.1.** The ASMD chart given below describes a state machine that counts 1's in a word and terminates activity as soon as possible. The machine remains in its reset state, *S\_idle*, until an external agent asserts *start*. This action asserts the output, *load\_temp*, which will cause *data* to be loaded into register *temp* when the state makes a transition to *S\_counting* at the next active edge of *clk*. The machine remains in *S\_counting* while *temp* contains a 1. Two actions occur concurrently at each subsequent clock: (1) *temp* is shifted towards its LSB and (2) *temp[0]* is added to *bit\_count*. When *temp* finally has a 1 in only the LSB, the machine's state moves to *S\_waiting*, where *done* is asserted. The state remains in *S\_waiting* until *start* is reasserted. Assume that when the synchrnous *reset* input is asserted the machine is reset to the state *S\_idle* and *bit\_count* and *temp* are initialized to 0.



Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

- (i) Write a Verilog model to model the data-path.
- (ii) Write a Verilog model to model the control unit based on the ASMD chart i.e. not based on equations.
- (iii) Write a Verilog model to model the whole design.