COE 405, Term 152

Design \& Modeling of Digital Systems

Quiz\# 2

Date: Sunday, Feb. 28, 2016
Q.1. It is required to design a sequential circuit that has a single input X representing a signed 2's complement number and a single output Y. The circuit receives the number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation $\mathrm{Y}=\mathrm{X}-3$ and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional asynchronous reset input R that resets the circuit into an initial state. The following are examples of input and output data:

Examples:

B					MSB		$\begin{aligned} & \text { Input=6 } \\ & \text { Output=3 } \end{aligned}$
Input	X	0	1	1	0	0	
Output	Y	1	1	0	0	0	
						B	
Input	X	0	0	1	1	0	Input=12
Output	Y	1	0	0	1	0	Output=9

Draw a state diagram or show the state table of the circuit with minimum number of states assuming a Mealy model. You are not required to implement the circuit.

Present State	Next State, \mathbf{Y}	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
$\mathrm{S} 0(\mathrm{~B}=3)$	$\mathrm{S} 1,1$	$\mathrm{~S} 2,0$
$\mathrm{~S} 1(\mathrm{~B}=2)$	$\mathrm{S} 2,0$	$\mathrm{~S} 2,1$
$\mathrm{~S} 2(\mathrm{~B}=1)$	$\mathrm{S} 2,1$	$\mathrm{~S} 3,0$
$\mathrm{~S} 3(\mathrm{~B}=0)$	$\mathrm{S} 3,0$	$\mathrm{~S} 3,1$

Q.2. Consider the given FSM that has 4 states, one input X and one output Z, represented by the following state table:

Present State	Next State, \mathbf{Z}	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
S 0	$\mathrm{~S} 1,0$	$\mathrm{~S} 2,0$
S 1	$\mathrm{~S} 0,0$	$\mathrm{~S} 3,0$
S 2	$\mathrm{~S} 2,0$	$\mathrm{~S} 3,1$
S 3	$\mathrm{~S} 3,0$	$\mathrm{~S} 2,1$

(i) Determine the equivalent states.

S1	(S2, S3)		
S2			
S3			
	S0	S1	S2

Thus, the equivalent states are (S0, S1) and (S2, S3).
(ii) Reduce the state table into the minimum number of states and show the reduced state table.

Present State	Next State, \mathbf{Z}	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
S 0	$\mathrm{~S} 0,0$	$\mathrm{~S} 2,0$
S 2	$\mathrm{~S} 2,0$	$\mathrm{~S} 2,1$

Q.3. Consider the sequential circuit given below having 5 inputs $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$ and one output $\{Z\}$. Assume that the delay of a gate is related to the number of inputs i.e. the delay of a 2 -input AND gate is 2 unit delays and the delay of a 2 -input OR gate is 2 unit delays.

(i) Determine the critical path of this circuit and the maximum propagation delay.
(i) The maximum propagation delay is Q and there are $\&$ cortical bathe as follows: $\{A, G 1, G 3, G 4, G 6\},\{A, G 1, G 3, G 5, G 7\}$
$\left\{B, G_{1}, G 3, G 4, G 6\right\},\{B, G 1, G 3, G 5, G 7\}$
$\left\{B, G_{2}, G 3, G 4, G 6\right\},\{B, G 2, G 3, G 5, G 7\}$
$\left.\left\{C, G_{2}, G 3, G 4, G 6\right\}, G C, G 2, G_{3}, G 5, G 7\right\}$
(ii) Using only the Retiming transformation, reduce the critical path of this circuit with the minimum number of flip-flops possible. Determine the maximum propagation delay after retiming.
(II) we can apply the slowing retiring transform.

$$
\begin{aligned}
& \text { to reduce the critical path: } \\
& \text { - retire cr by }+1 \\
& \text { - retire } 67 \text { by }+1 \\
& \text { - retime G8 by }+1 \\
& \text { - retime the stem on fanout of } 66 \text { by }+1 \\
& \text { - retire the stem on fanout of } 67 \text { by }+1
\end{aligned}
$$

- retune cay by +1
- retume er by +1
- retire the stem on the fanout of C_{3} by +1 This results in the following circuit after retiring:

The maximum propagation delay in the resulting circuit is 4. The number of flip-flops has increased from 3 to 5 .

