COE 405, Term 152

Design \& Modeling of Digital Systems

Quiz\# 1

Date: Thursday, Feb. 11, 2016
Q.1. Assume that the area and delay of a gate is related to the number of its inputs i.e., a 2input AND gate has an area and delay $=2$. Consider the given circuit below implementing the function F :

(i) Determine the area and maximum delay of this circuit.

Area $=8$, Maximum Delay $=8$
(ii) Provide an implementation of this function with an improved delay and determine its area and maximum delay.

$$
\begin{aligned}
& F=E+D(C+A B)=E+D C+D A B \\
& \text { Area }=8, \text { Maximum Delay }=6
\end{aligned}
$$

Q.2. Consider the function: $F(A, B, C, D)=A B+\bar{A} B C+B C D+\bar{A} \bar{D}$
(i) Compute the expansion of F using the Orthonormal Basis $\left\{\varnothing_{1}=\bar{A} \bar{B}, \varnothing_{2}=\bar{A} B\right.$, $\left.\varnothing_{3}=A \bar{B}, \varnothing_{4}=A B\right\}$.

$$
\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}\left(\mathrm{D}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{C}+\mathrm{D}^{\prime}\right)+\mathrm{AB}^{\prime}(0)+\mathrm{AB}(1)
$$

(ii) Compute the function \bar{F} utilizing the orthonormal based expansion of the function.

$$
\begin{aligned}
\mathrm{F}^{\prime} & =\mathrm{A}^{\prime} \mathrm{B}^{\prime}(\mathrm{D})+\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{C}^{\prime} \mathrm{D}\right)+\mathrm{AB}^{\prime}(1)+\mathrm{AB}(0) \\
& =\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AB}^{\prime} \quad=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AB}^{\prime}
\end{aligned}
$$

Q.3. It is required to design a combinational circuit that computes the equation $\mathrm{Z}=2 \mathrm{X}+\mathrm{Y}-1$, where X and Y are n -bit signed 2 's complement numbers.
(i) Design the circuit as a modular iterative circuit where each module receives a single bit of the inputs, X_{i} and Y_{i}.

(ii) Derive the truth table of your 1-bit module in (i).

$\mathrm{C} 1_{\mathrm{i}-1}$	$\mathrm{C}_{\mathrm{i}_{\mathrm{i}-1}}$	X_{i}	Y_{i}	C_{i}	C_{i}	Z_{i}
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	1
0	0	1	1	1	0	0
0	1	0	0	0	1	0
0	1	0	1	0	1	1
0	1	1	0	1	0	0
0	1	1	1	1	0	1
1	0	0	0	0	1	1
1	0	0	1	1	0	0
1	0	1	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	1
1	1	1	0	1	1	0
1	1	1	1	1	1	1

