COE 405, Term 152

Design \& Modeling of Digital Systems

Quiz\# 1

Date: Thursday, Feb. 11, 2016
Q.1. Assume that the area and delay of a gate is related to the number of its inputs i.e., a 2input AND gate has an area and delay $=2$. Consider the given circuit below implementing the function F :

(i) Determine the area and maximum delay of this circuit.
(ii) Provide an implementation of this function with an improved delay and determine its area and maximum delay.
Q.2. Consider the function: $F(A, B, C, D)=A B+\bar{A} B C+B C D+\bar{A} \bar{D}$
(i) Compute the expansion of F using the Orthonormal Basis $\left\{\varnothing_{1}=\bar{A} \bar{B}, \varnothing_{2}=\bar{A} B\right.$, $\left.\varnothing_{3}=A \bar{B}, \varnothing_{4}=A B\right\}$.
(ii) Compute the function \bar{F} utilizing the orthonormal based expansion of the function.
Q.3. It is required to design a combinational circuit that computes the equation $\mathrm{Z}=2 \mathrm{X}+\mathrm{Y}-1$, where X and Y are n-bit signed 2's complement numbers.
(i) Design the circuit as a modular iterative circuit where each module receives a single bit of the inputs, X_{i} and Y_{i}.
(ii) Derive the truth table of your 1-bit module in (i).

