COE 405, Term 122

Design \& Modeling of Digital Systems

Quiz\# 1

Date: Monday, Feb. 18, 2013
Q.1. Consider the two functions: $F_{1}(A, B, C, D)=A D+B C+A \bar{C}+\bar{A} \bar{D}$ and $F_{2}(A, B, C, D)=A B C+\bar{B} \bar{C}+\bar{A} \bar{C}+\bar{A} \bar{D}$
(i) Compute the expansion of F_{1} and F_{2} using the Orthonormal Basis $\left\{\varnothing_{1}=\bar{A} \bar{B}\right.$, $\left.\varnothing_{2}=\bar{A} B, \varnothing_{3}=A \bar{B}, \varnothing_{4}=A B\right\}$.
(ii) Compute the function $F_{1} \oplus F_{2}$.
Q.2. It is required to model a 4-bit comparator that compares two 4-bit numbers $A=A_{3} A_{2} A_{1} A_{0}$ and $B=B_{3} B_{2} B_{1} B_{0}$, and produces two outputs GT and LT. If $A>B$, then the output signal GT is set to 1 and LT is set to 0 . If $A<B$, then the output signal LT is set to 1 , and GT is set to 0 . Otherwise both signals will be set to 0 , which indicates that the two numbers are equal (i.e. $\mathrm{A}=\mathrm{B}$). The 4 -bit comparator circuit can be designed in a modular way as shown below:

(i) Derive the truth table for a 1-bit magnitude comparator.
(ii) Find the simplified equations for the outputs of a 1-bit magnitude comparator.

