COE 405, Term 062

Design \& Modeling of Digital Systems

Quiz\# 1

Date: Saturday, March 17, 2007

Q.1. It is required to model a 4-bit comparator that compares two 4-bit numbers $A=A_{3} A_{2} A_{1} A_{0}$ and $B=B_{3} B_{2} B_{1} B_{0}$, and produces two outputs GT and LT. If $A>B$, then the output signal GT is set to 1 and LT is set to 0 . If $A<B$, then the output signal LT is set to 1 , and GT is set to 0 . Otherwise both signals will be set to 0 , which indicates that the two numbers are equal (i.e. A=B). The 4-bit comparator circuit can be designed in a modular way as shown below:

The equations for the 1-bit magnitude comparator can be found to be:

$$
\begin{aligned}
& G T_{i}=G T_{i+1}+\overline{L T_{i+1}} A_{i} \overline{B_{i}} \\
& L T_{i}=L T_{i+1}+\overline{G T_{i+1}} A_{i} B_{i}
\end{aligned}
$$

(i) Describe an Entity COMP for a 1-bit magnitude comparator.
(ii) Model an Architecture Conc for the 1-bit magnitude comparator (COMP) using concurrent statements.
(iii) Describe an Entity COMP4 for a 4-bit magnitude comparator.
(iv) Model Architecture Struct for the 4-bit magnitude comparator (COMP4) using instantiations of the Entity COMP.

