COE 405, Term 152

Design \& Modeling of Digital Systems

HW\# 6

Due date: Sunday, April 17

Q.1. It is required to design a circuit that computes the average, maximum and minimum of a number of scores N (assuming $0<\mathrm{N} \leq 15$), each score with a value in the range [0,15]. Once a user presses a Start button, the number of scores N will be entered. Then, scores will be entered in subsequent clock cycles one score at a time. Once the circuit finishes computation, it will assert a Done signal and will generate the average, maximum and minimum scores. The average will be shown as an integer number resulting from dividing the sum by N with rounding the result to the nearest integer. The Done signal will remain asserted unless the user presses a Reset button.
(i) Develop an ASMD chart for the circuit.
(ii) Show the design of your data path unit. Write a Verilog module to model your data path.
(iii) Write a Behavioral Verilog module to model the ASMD chart of your circuit.
(iv) Write a test bench to verify the correct functionality of your circuit. Show snapshots of your simulation to demonstrate its correctness.
(v) Implement your circuit on FPGA and demonstrate its correct functionality. Include a link for a video snapshot to demonstrate correct functionality of your circuit on FPGA.

This assignment can be solved based on a group of two students. The solution should be well organized. Submit a soft copy of your solution in a zip file including your Verilog models. Your solution should be submitted in a word file that contains the following items:
i. Your name and ID
ii. Assignment number
iii. Problem statement
iv. Your solution
v. Include snapshots of simulation output to illustrate the correctness of your models.

