COE 405, Term 021

Design & Modeling of Digital Systems

HW# 6

Due date: Saturday, Jan. 11, 2003

Q.1. It is required to model in VHDL an arithmetic and logic unit (ALU) with inputs A and B and output C, that can perform any of the following functions shown below based on the three selection lines AS2, AS2, and AS0:

AS2 AS1 AS0	Operation
000	C=A+B
001	C=A-B
010	C=A+1
011	C=A-1
100	C=B
101	C=NOT A
110	C= A AND B
111	C= A OR B

Assume that all the inputs and outputs are of type std_logic. Model the ALU to be of generic size such that the size of the ALU is specified by a generic map.

- (i) Simulate a 4-bit ALU to verify the correctness of your model and include simulation sresults.
- (ii) Synthesize a 2-bit ALU using Xilinx FPGA tools and demonstrate the functionality of your design.
- **Q.2.** Write a VHDL description for a CMOS memory element with read/write control, enable, and a shared input-output line. When enabled and rw = I, the output is driven by the memory. When enabled and rw = 0, the input will be written into the memory. Use qit type.
 - (i) Using this memory element, write a structural VHDL description for modeling a $2^n x$ m bit memory array (2^n rows and m columns) that has n bit address size and m bit data size. All input-output lines in a column are wired. The address and data sizes should be generic. Use an n x 2^n row decoder for decoding the address.
 - (ii) Simulate a $2^3 \times 4$ (i.e. 8×4 with 4-bit address) memory and verify its correct functionality by writing and reading from all addresses.
 - (iii) Synthesize a $2^3 \times 4$ (i.e. 8 x 4 with 4-bit address) memory and verify its correct functionality using Xilinx FPGA tools. (1% Bonus).