COE 405, Term 152

Design \& Modeling of Digital Systems

HW\# 4

Due date: Tuesday, March 22

Q.1. An iterative design of a combinational circuit that computes the equation $\mathrm{Y}=3 * \mathrm{X}-1$, where X is an n -bit signed 2 's complement number is given below:

(i) Write a Verilog model to model the given 1-bit cell using primitive gates. Model the delay of AND and OR gates as 5ps, while the delay of XOR and XNOR gates as 8 ps.
(ii) Write a Verilog model for modeling the circuit given below computing the equation $\mathrm{Y}=3^{*} \mathrm{X}-1$ assuming X is a 4 -bit number by instantiating 4 cells:

(iii) Write a test bench to test the correctness of your Verilog model by applying the following input patterns $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}=\{0000,0001,0011,0101,1111,1110\}$. Apply consecutive inputs patterns after a delay of 20ps.
(iv) Determine the longest delay of your 4-bit circuit.
(v) Write a test bench to verify the longest delay of your 4-bit circuit.

This assignment can be solved based on a group of two students. The solution should be well organized. Submit a soft copy of your solution in a zip file including your Verilog models. Your solution should be submitted in a word file that contains the following items:
i. Your name and ID
ii. Assignment number
iii. Problem statement
iv. Your solution
v. Include snapshots of simulation output to illustrate the correctness of your models.

