### **COE 405, Term 131**

### **Design & Modeling of Digital Systems**

#### **HW#3 Solution**

Due date: Tuesday, Nov. 5

- **Q.1.** It is required to design a circuit that computes the results of election and determines the winner. It is assumed that there are four members competing in the election with the following codes: Member 1: 00, Member 2: 01, Member 3: 10, and Member 4: 11. Assume that the number of votes to be counted will be given to the circuit when a *Start* input is set. Assume for simplicity that the maximum number of votes to be counted is 63. Assume that votes will be given to the circuit one vote at a time before the rising edge of each clock cycle. Once the circuit finishes computation, it will assert a *Done* signal and will generate a 2-bit output indicating the code of the winner. In case there is a tie, a Tie signal is set to 1.
  - (i) Develop an ASMD chart for the circuit.



(ii) Show the design of the data-path and control unit of the circuit.

## **Block Diagram:**



### **Data Path Unit:**



# **Control Unit:**

| C.S.       | Input |         |         |      | N.S. | Output |      |      |      |      |      |
|------------|-------|---------|---------|------|------|--------|------|------|------|------|------|
|            | Start | Data[1] | Data[0] | VCEZ |      | Load   | INC1 | INC2 | INC3 | INC4 | Done |
| S0         | 0     | X       | X       | X    | S0   | 0      | 0    | 0    | 0    | 0    | 0    |
| S0         | 1     | X       | X       | X    | S1   | 1      | 0    | 0    | 0    | 0    | 0    |
| S1         | X     | 0       | 0       | 0    | S1   | 0      | 1    | 0    | 0    | 0    | 0    |
| S1         | X     | 0       | 1       | 0    | S1   | 0      | 0    | 1    | 0    | 0    | 0    |
| <b>S</b> 1 | X     | 1       | 0       | 0    | S1   | 0      | 0    | 0    | 1    | 0    | 0    |
| S1         | X     | 1       | 1       | 0    | S1   | 0      | 0    | 0    | 0    | 1    | 0    |
| <b>S</b> 1 | X     | X       | X       | 1    | S0   | 0      | 0    | 0    | 0    | 0    | 1    |

State Assignment: S0=0, S1=1.



## (iii) Implement the circuit and verify its correct functionality by simulation.

The simulation waveforms given below show clearly that the circuit works correctly: In the first simulation run, the number of votes is 7 and the votes applied are: 0, 1, 2, 3, 3, 1, 1. The winner is member 1.



In the second simulation run, the number of votes is 6 and the votes applied are: 2, 1, 2, 1, 3, 0. There is a tie between member 1 and member 2.

