COE 405, Term 131

Design & Modeling of Digital Systems

HW# 2 Solution

Due date: Wednesday, October 9

Q.1. It is required to design a sequential circuit that has a single input X and a single output Y. The circuit receives an unsigned number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation 5*X and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional reset input R which resets the circuit into an initial state. The following are examples of input and output data:

Exam	<u>ples:</u>		LSB				MSB	
	Input	Х	0	1	1	0	0	Input=6
	Output	Y	0	1	1	1	1	Output=30
			LSB				MSB	
	Input	Х	1	1	0	0	0	Input=3
	Output	Y	1	1	1	1	0	Output=15

(i) Draw the state diagram of the circuit assuming a Mealy model.

(ii) Implement the circuit using D-FFs.

We implement the circuit using the following state assignment; So = 100, SI = 110, S2 = 101, S3 = 111, S4 = 011

	С	ر ک ر		input	1	VI :	s .	output	
	FZ	F١	Fo	×	Fa	⁺ F	1 F6	γ	
	1	0	0	Ö	1	0	0	0	
So	۱	0	D	l	١	۱	0	1	
	1	1	0	0	(0	l	Ö	
SI	۱	1	0	1	1	١	<u> </u>	<u> </u>	
	1	0	1	0	ι	0	C	١	
52	Ĺ	0	١	1	١	1	Ι	0	
	-	$\overline{1}$	1	0	1	0	ι	1	
53	ì	i	i	1	0	١	1	0	
125	0	T	1	0	1	۱	0	0	
54	0	۱	١	1	Ø	1	1	l	

$$= \times (\overline{F_2} + \overline{f_6})$$
$$+ \overline{\chi} (\overline{F_2} + \overline{f_6})$$

(iii) Verify the correctness of your circuit by simulation.

It is clear from simulations that the circuit is working properly as for the input X=111=7, the output produced is Y=110001=35.

Q.2. Consider the given FSM that has 5 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z			
	X=0	X=1		
S 1	S3, 1	S5, 0		
S2	S3, 0	S5, 1		
S3	S2, 0	S1, 1		
S4	S4, 0	S5, 1		
S5	S4, 1	S1, 0		

(i) Determine the equivalent states.

(ii) Reduce the state table into the minimum number of states and show the reduced state table.

Reduced	State	table:
Pis,	Nis,	2
	X=0	X = 1
\$15	\$234,1	515,0
5234	S 2,34, O	8 15, 1

Q.3. Consider the given FSM that has 4 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z			
	X=0	X=1		
SO	S0, 0	S1, 0		
S1	S2, 0	S3, 0		
S2	S0, 0	S1, 1		
S3	S2, 0	S3, 0		

(i) Implement the FSM using the following state assignment: S0=00, S1=10, S2=01, S3=11.

So=00, SI=10, S2=01, S3=11

Prs.	Nis.,Z				
Fifo	X=0	メ=1			
00	00,0	10,0			
10	01,0	11/0			
01	0 ,00	ا رەا			
11	01,0	11/0			

	S	0 = 11 , 51	ر اہ د	53	2=00, 53	= 10
	Pisi		NIS.	,	2	
	FIFO		× 20		× = 1	
	11		11,0		01,0	
	• 1		0010		10,0	
			11/0		ا ر ا ہ	
	10		00/0		1010	
×	FIFO 0 1 1 C	0 1 0 0 1 0 1 0 1	Fî	11 (1	X + FI +) Fo
2	HR I		Fot	n,	FI + Fo	×
	× Fife		3	6	XFIE	

(ii) Implement the FSM using the following state assignment: S0=11, S1=01, S2=00, S3=10.

(iii) Verify that the two circuits are equivalent by simulation by applying the following input sequence: $\{0,1,0,1,1,0,1,0,1\}$.

