COE 405, Term 152

Design \& Modeling of Digital Systems

HW\# 2

Due date: Thursday, Feb. 25

Q.1. It is required to design a sequential circuit that has a single input X representing a signed 2's complement number and a single output Y. The circuit receives the number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation $\mathrm{Y}=3 * \mathrm{X}-2$ and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional asynchronous reset input R that resets the circuit into an initial state. The following are examples of input and output data:

(i) Draw the state diagram of the circuit assuming a Mealy model.
(ii) Implement the circuit using D-FFs.
(iii) Verify the correctness of your circuit by simulation.
Q.2. Consider the given FSM that has 6 states, two inputs X and Y, and one output Z, represented by the following state table:

Present State	Next State				Output
	$\mathbf{X Y = 0 0}$	$\mathbf{X Y = 0 1}$	$\mathbf{X Y = 1 0}$	$\mathbf{X Y = 1 1}$	\mathbf{Z}
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S4	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

(i) Determine the equivalent states.
(ii) Reduce the state table into the minimum number of states and show the reduced state table.
Q.3. Consider the given FSM that has 4 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, \mathbf{Z}	
	$\mathbf{X = 0}$	$\mathbf{X}=\mathbf{1}$
S0	$\mathrm{S} 0,1$	$\mathrm{~S} 2,0$
S 1	$\mathrm{~S} 0,0$	$\mathrm{~S} 2,0$
S 2	$\mathrm{~S} 1,0$	$\mathrm{~S} 3,0$
S3	$\mathrm{S} 1,0$	$\mathrm{~S} 3,1$

(i) Implement the FSM using the following state assignment: $\mathrm{S} 0=00, \mathrm{~S} 1=01, \mathrm{~S} 2=10$, S3=11.
(ii) Implement the FSM using the following state assignment: $\mathrm{S} 0=01, \mathrm{~S} 1=10, \mathrm{~S} 2=11$, S3 $=00$.
(iii) Compare the area of the two resulting circuits.
Q.4. Consider the circuit given below representing a serial adder. Assume that the delay of a 2input AND gate is 2 unit delays, the delay of a 2-input OR gate is 2 unit delays and the delay of a 2-input XOR gate is 4 unit delays.

(i) Determine the critical path of this circuit and the maximum propagation delay.
(ii) Using only the Retiming transformation, reduce the critical path of this circuit with the minimum number of flip-flops possible.

