COE 405, Term 152

Design & Modeling of Digital Systems

HW# 2

Due date: Thursday, Feb. 25

Q.1. It is required to design a sequential circuit that has a single input X representing a signed 2's complement number and a single output Y. The circuit receives the number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation Y=3*X-2 and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional asynchronous reset input R that resets the circuit into an initial state. The following are examples of input and output data:

<u>Examp</u>	oles:		LSB				MSB	
	Input	Х	0	1	1	0	0	Input=6 Output=16
	Output	Y	0	0	0	0	1	Output=16
			LSB				MSB	
	Input	Х	1	1	0	0	0	Input=3 Output=7
	Output	Y	1	1	1	0	0	Output=7

- (i) Draw the state diagram of the circuit assuming a Mealy model.
- (ii) Implement the circuit using D-FFs.
- (iii) Verify the correctness of your circuit by simulation.
- **Q.2.** Consider the given FSM that has 6 states, two inputs X and Y, and one output Z, represented by the following state table:

Present State		Output			
	XY=00	XY=01	XY=10	XY=11	Z
S 0	S 0	S 1	S2	S 3	1
S1	S 0	S 3	S 1	S4	0
S2	S1	S 3	S2	S4	1
S3	S1	S 0	S4	S5	0
S4	S 0	S 1	S2	S5	1
S5	S1	S4	S 0	S5	0

- (i) Determine the equivalent states.
- (ii) Reduce the state table into the minimum number of states and show the reduced state table.
- **Q.3.** Consider the given FSM that has 4 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z			
	X=0	X=1		
SO	S0, 1	S2, 0		
S1	S0, 0	S2, 0		
S2	S1, 0	S3, 0		
S3	S1, 0	S3, 1		

- (i) Implement the FSM using the following state assignment: S0=00, S1=01, S2=10, S3=11.
- (ii) Implement the FSM using the following state assignment: S0=01, S1=10, S2=11, S3=00.
- (iii) Compare the area of the two resulting circuits.
- **Q.4.** Consider the circuit given below representing a serial adder. Assume that the delay of a 2-input AND gate is 2 unit delays, the delay of a 2-input OR gate is 2 unit delays and the delay of a 2-input XOR gate is 4 unit delays.

- (i) Determine the critical path of this circuit and the maximum propagation delay.
- (ii) Using only the **Retiming** transformation, reduce the critical path of this circuit with the minimum number of flip-flops possible.