COE 405, Term 131

Design & Modeling of Digital Systems

HW# 2

Due date: Wednesday, October 9

Q.1. It is required to design a sequential circuit that has a single input X and a single output Y. The circuit receives an unsigned number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation 5*X and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional reset input R which resets the circuit into an initial state. The following are examples of input and output data:

Examples:			LSB				MSB	
	Input	X	0	1	1	0	0	Input=6 Output=30
	Output	Y	0	1	1	1	1	Output=30
			LSB				MSB	
	Input	X	1	1	0	0	0	Input=3
	Output	Y	1	1	1	1	0	Input=3 Output=15

- (i) Draw the state diagram of the circuit assuming a **Mealy** model.
- (ii) Implement the circuit using D-FFs.
- (iii) Verify the correctness of your circuit by simulation.
- **Q.2.** Consider the given FSM that has 5 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z			
	X=0	X=1		
S 1	S3, 1	S5, 0		
S2	S3, 0	S5, 1		
S3	S2, 0	S1, 1		
S4	S4, 0	S5, 1		
S5	S4, 1	S1, 0		

- (i) Determine the equivalent states.
- (ii) Reduce the state table into the minimum number of states and show the reduced state table.
- **Q.3.** Consider the given FSM that has 4 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z			
	X=0	X=1		
S0	S0, 0	S1, 0		
S1	S2, 0	S3, 0		
S2	S0, 0	S1, 1		
S3	S2, 0	S3, 0		

- (i) Implement the FSM using the following state assignment: S0=00, S1=10, S2=01, S3=11.
- (ii) Implement the FSM using the following state assignment: S0=11, S1=01, S2=00, S3=10.
- (iii) Verify that the two circuits are equivalent by simulation by applying the following input sequence: $\{0,1,0,1,1,0,1,0,1,0,0\}$.