COE 405, Term 131

Design \& Modeling of Digital Systems

HW\# 2

Due date: Wednesday, October 9

Q.1. It is required to design a sequential circuit that has a single input X and a single output Y. The circuit receives an unsigned number serially through the input X from the least significant bit (LSB) to the most significant bit (MSB), and computes the equation $5 * \mathrm{X}$ and generates the output serially from the least significant bit to the most significant bit. The circuit has an additional reset input R which resets the circuit into an initial state. The following are examples of input and output data:

(i) Draw the state diagram of the circuit assuming a Mealy model.
(ii) Implement the circuit using D-FFs.
(iii) Verify the correctness of your circuit by simulation.
Q.2. Consider the given FSM that has 5 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, \mathbf{Z}	
	$\mathbf{X = 0}$	$\mathbf{X = 1}$
S1	$\mathrm{S} 3,1$	$\mathrm{~S} 5,0$
S2	$\mathrm{S} 3,0$	$\mathrm{~S} 5,1$
S3	$\mathrm{S} 2,0$	$\mathrm{~S} 1,1$
S4	$\mathrm{S} 4,0$	$\mathrm{~S} 5,1$
S5	$\mathrm{S} 4,1$	$\mathrm{~S} 1,0$

(i) Determine the equivalent states.
(ii) Reduce the state table into the minimum number of states and show the reduced state table.
Q.3. Consider the given FSM that has 4 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, \mathbf{Z}	
	$\mathbf{X = 0}$	$\mathbf{X}=\mathbf{1}$
S0	$\mathrm{S} 0,0$	$\mathrm{~S} 1,0$
S 1	$\mathrm{~S} 2,0$	$\mathrm{~S} 3,0$
S 2	$\mathrm{~S} 0,0$	$\mathrm{~S} 1,1$
S 3	$\mathrm{~S} 2,0$	$\mathrm{~S} 3,0$

(i) Implement the FSM using the following state assignment: $\mathrm{S} 0=00, \mathrm{~S} 1=10, \mathrm{~S} 2=01$, S3=11.
(ii) Implement the FSM using the following state assignment: $\mathrm{S} 0=11, \mathrm{~S} 1=01, \mathrm{~S} 2=00$, $\mathrm{S} 3=10$.
(iii) Verify that the two circuits are equivalent by simulation by applying the following input sequence: $\{0,1,0,1,1,0,1,0,1,0,0\}$.

