COE 405, Term 152

Design & Modeling of Digital Systems

HW#1 Solution

Due date: Thursday, Feb. 11

- **Q.1.** Consider the two functions $f=a \oplus b \oplus c$ and g=a b + a c + b c.
 - (i) Implement the function g using only 2x1 MUXs.

$$g = a' [bc] + a [b+c] = a' [b' [0] + b [c]] + a [b'[c] + b[1]]$$

(ii) Compute the function $f \oplus g$ based on orthonormal basis expansion.

 $\begin{array}{l} f = a'b' \ [c] + a'b \ [c'] + ab' \ [c'] + ab \ [c] \\ g = a'b' \ [0] + a'b \ [c] + ab' \ [c] + ab \ [1] \\ f \oplus g = a'b' \ [c] + a'b \ [1] + ab' \ [1] + ab \ [c'] = a'b'c + a'b + ab' + abc' = a'c + a'b + ab' + ac' \\ \end{array}$

- **Q.2.** It is required to design a combinational circuit that computes the equation Y=3*X-1, where X is an n-bit signed 2's complement number.
 - (i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_i.

This circuit can be designed by assuming that we have a borrow feeding the first cell or by representing -1 in 2's complement as 11...111 and adding this 1 ion each cell. I will follow the second approach. We need to represent carry-out values in the range 0 to 3. Thus, we need to signals to represent Carry out values.

(ii) Derive the truth table of your 1-bit module in (i).

C1 _{i-1}	C0 _{i-1}	Xi	C1 _i	C0 _i	Zi
0	0	0	0	0	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	1	1

(iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.

	00	01	11	10
0	1 0	0 1	13	02
1	14	05	1 7	06

	00	01	11	10
0	0 0	0 1	03	1 2
1	14	1 5	1 7	06

 $\overline{C0_i} = C1_{i\text{-}1} \ C0_{i\text{-}1}' + C1_{i\text{-}1} \ X_i + C1_{i\text{-}1}' \ C0_{i\text{-}1} \ X_i' = C1_{i\text{-}1} \ (C0_{i\text{-}1}' + X_i) + C1_{i\text{-}1}' \ C0_{i\text{-}1} \ X_i' = C1_{i\text{-}1} \oplus (C0_{i\text{-}1} \ X_i')$

	00	01	11	10
0	0 0	1 1	13	02
1	04	15	1 7	16
$C1_i = X_i + C1_{i-1} C0_{i-1}$				

(iv) Verify the correctness of your design by modeling and simulating a circuit to compute the required equation assuming X is a 4-bit number using logicworks.

Note that for values whose correct result will not fit in 4-bits such as values ≥ 6 will not produce correct results. We need to use larger number of cells to ensure that the correct output will fit.

