COE 405, Term 152

Design \& Modeling of Digital Systems

HW\# 1 Solution

Due date: Thursday, Feb. 11

Q.1. Consider the two functions $\mathrm{f}=\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c}$ and $\mathrm{g}=\mathrm{ab}+\mathrm{ac}+\mathrm{b} \mathrm{c}$.
(i) Implement the function g using only 2×1 MUXs.

$$
\mathrm{g}=\mathrm{a}^{\prime}[\mathrm{b} \mathrm{c}]+\mathrm{a}[\mathrm{~b}+\mathrm{c}]=\mathrm{a}^{\prime}\left[\mathrm{b}^{\prime}[0]+\mathrm{b}[\mathrm{c}]\right]+\mathrm{a}\left[\mathrm{~b}^{\prime}[\mathrm{c}]+\mathrm{b}[1]\right]
$$

(ii) Compute the function $\mathrm{f} \oplus \mathrm{g}$ based on orthonormal basis expansion.

$$
\begin{aligned}
& \mathrm{f}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}[\mathrm{cc}]+\mathrm{a}^{\prime} \mathrm{b}\left[\mathrm{c}^{\prime}\right]+\mathrm{ab} \text { ' }\left[\mathrm{c}^{\prime}\right]+\mathrm{ab}[\mathrm{c}] \\
& \mathrm{g}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}[0]+\mathrm{a}^{\prime}[\mathrm{c}]+\mathrm{ab}[\mathrm{cc}]+\mathrm{ab}[1] \\
& \mathrm{f} \oplus \mathrm{~g}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}[\mathrm{c}]+\mathrm{a}^{\prime} \mathrm{b}[1]+\mathrm{ab}[1]+\mathrm{ab}\left[\mathrm{c}^{\prime}\right]=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{b}+\mathrm{ab}+\mathrm{abc}=\mathrm{a}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{b}+\mathrm{ab} \mathrm{~b}^{\prime}+\mathrm{ac}
\end{aligned}
$$

Q.2. It is required to design a combinational circuit that computes the equation $\mathrm{Y}=3 * \mathrm{X}-1$, where X is an n -bit signed 2 's complement number.
(i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_{i}.

This circuit can be designed by assuming that we have a borrow feeding the first cell or by representing -1 in 2 's complement as $11 \ldots 111$ and adding this 1 ion each cell. I will follow the second approach. We need to represent carry-out values in the range 0 to 3 . Thus, we need to signals to represent Carry out values.

(ii) Derive the truth table of your 1-bit module in (i).

$\mathrm{C} 1_{\mathrm{i}-1}$	$\mathrm{C}_{\mathrm{i}-1}$	X_{i}	C_{i}	$\mathrm{C} 0_{\mathrm{i}}$	Z_{i}
0	0	0	0	0	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	1	1

(iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	
$\mathbf{0}$	1	0	0	1	1
3	0	2			
$\mathbf{1}$	1	4	0	5	1

$\mathrm{Z}=\left(\mathrm{C}_{\mathrm{i}-1} \oplus \mathrm{X}_{\mathrm{i}}\right)^{\prime}$

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	0	0	0	1
	0	3	12	
$\mathbf{1}$	1	4	1	5
1	7	0		

$\left.\begin{array}{l|l|l|l|l|l|}\hline & \mathbf{0 0} & \mathbf{0 1} & \mathbf{1 1} & \mathbf{1 0} \\ \hline \mathbf{0} & 0 & 0 & 1 & 1 & 1\end{array}\right]$
$\mathrm{Cl}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}+\mathrm{Cl}_{\mathrm{i}-1} \mathrm{C} 0_{\mathrm{i}-1}$
(iv) Verify the correctness of your design by modeling and simulating a circuit to compute the required equation assuming X is a 4-bit number using logicworks.

Note that for values whose correct result will not fit in 4-bits such as values ≥ 6 will not produce correct results. We need to use larger number of cells to ensure that the correct output will fit.

