COE 405, Term 131

Design \& Modeling of Digital Systems

HW\# 1 Solution

Due date: Sunday, Sep. 29
Q.1. Consider the two functions $f=a b c+a^{\prime} b^{\prime} c^{\prime}$ and $g=a b+a^{\prime} c$.
(i) Implement the function f using a single 4 x 1 MUX.
(ii) Compute the complement of f .
(iii) Compute the function $£ \oplus \mathrm{~g}$ based on orthonormal basis expansion.
Q.2. It is required to design a combinational circuit that computes the equation $\mathrm{Y}=5^{*} \mathrm{X}$, where X is an n -bit unsigned number.
(i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_{i}.
(ii) Derive the truth table of your 1-bit module in (i).
(iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.
(iv) Verify the correctness of your design by modeling and simulating a 4-bit circuit using logicworks.
(v) Assume that the delay of a gate is related to the number of its inputs, i.e. the delay of an inverter is 1 , the delay of a 2 -input gate is 2 , etc. Compute the maximum propagation delay of your n-bit circuit.
(vi) Verify the correctness of your maximum propagation delay calculation by measuring the longest delay for a 4-bit circuit using logicworks.

COE 405

HW\# 1 Solution

Q1.

$$
\begin{aligned}
& f=a b c+\bar{a} \bar{b} c \\
& g=a b+\bar{a} c
\end{aligned}
$$

(i)

$$
\begin{aligned}
f & =\bar{a} \bar{b}[\bar{c}]+\bar{a} b[0] \\
& +a b[0]+a b[c]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\bar{f} & =\bar{a} \bar{b}[c]+\bar{a} b[1] \\
& +a \bar{b}[1]+a b \bar{c} \\
& =\bar{a} \bar{b} c+\bar{a} b+a \bar{b}+a b \bar{c}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& g=\bar{a} \bar{b}[c]+\bar{a} b[c] \\
&+a \bar{b}[0]+a b[1] \\
& f \oplus g=\bar{a} \bar{b}[1]+\bar{a} b[c] \\
&+a \bar{b}[0]+a b[\bar{c}] \\
&= \bar{a} \bar{b}+\bar{a} b c+a b \bar{c} \\
&-1-
\end{aligned}
$$

22. $y=5 \times x$
(i) By analyzing the problem, we can deduce that the largest carry-out is 4. Thus, we need 3 bits to be transferred be tween the modules. The interface for the l-bit module is as follows:

(ii) Truth Table:

$x i$	$\operatorname{cin} 2$	$\operatorname{Cin} 1$	Cine	Cont 2	Cont 1	Conto V_{i}	
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	-	-	-	-
0	1	1	0	-	-	-	-
0	1	1	1	-	-	-	-
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1
1	1	0	1	-	-	-	-
1	1	1	0	-	-	-	-
1	1	1	1	-	-	-	-

(iii)

$$
\text { cout } 2=x_{i} \text { cin2 }+x_{i} \text { Cinl }_{\text {in }} \text { Cino }
$$

$$
\begin{aligned}
C_{\text {ont } 1}= & \bar{x}_{i} C_{\text {in } 2}+x_{i} \overline{c_{i v i 2}} \overline{C_{i n 1}} \\
& +x_{i} \overline{C_{i n 2}} \overline{C_{i n o}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Conto }= & \bar{x}_{i} \operatorname{Cin} 1+\operatorname{cin}_{1} \overline{C_{i n o}} \\
& +x_{i} \overline{\operatorname{Cin}_{1}} C_{\text {ino }}
\end{aligned}
$$

(iv)

(v) To simplify the analysis, I add an inverter delay to any gate that has one of the inputs inverted. A very quick analysis by computing the longest delay across one cell, one can deduce that the longest delay across a cell is 7 . Thus, having 4 cells the worst case delay is estimated to be $4 * 7=28$.
(vi) To verify our analysis we changed X from 0 to 13 and computed the difference from the time X has changed $(=2110)$ to the time when Y3 has changed $(=2138)$ giving a total delay $=2138-2110=28$.

