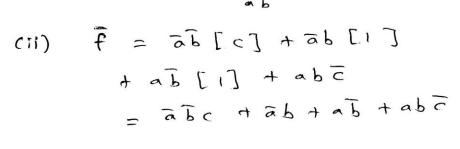
COE 405, Term 131

Design & Modeling of Digital Systems

HW#1 Solution

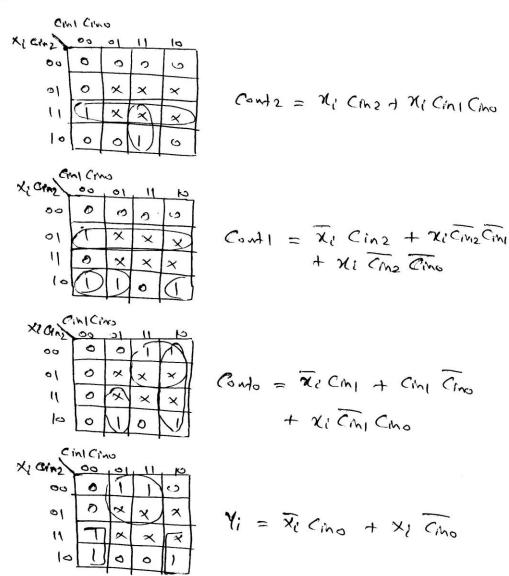

Due date: Sunday, Sep. 29

- **Q.1.** Consider the two functions f=a b c + a' b' c' and g=a b+a' c.
 - (i) Implement the function f using a single 4x1 MUX.
 - (ii) Compute the complement of f.
 - (iii) Compute the function $f \oplus g$ based on orthonormal basis expansion.
- **Q.2.** It is required to design a combinational circuit that computes the equation Y=5*X, where X is an n-bit unsigned number.
 - (i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_i.
 - (ii) Derive the truth table of your 1-bit module in (i).
 - (iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.
 - (iv) Verify the correctness of your design by modeling and simulating a 4-bit circuit using logicworks.
 - (v) Assume that the delay of a gate is related to the number of its inputs, i.e. the delay of an inverter is 1, the delay of a 2-input gate is 2, etc. Compute the maximum propagation delay of your n-bit circuit.
 - (vi) Verify the correctness of your maximum propagation delay calculation by measuring the longest delay for a 4-bit circuit using logicworks.

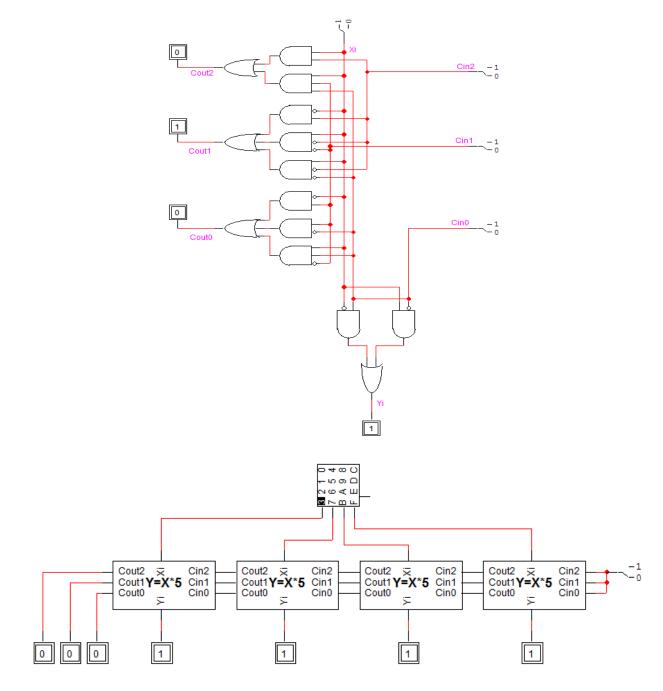
Term 131

COE 405

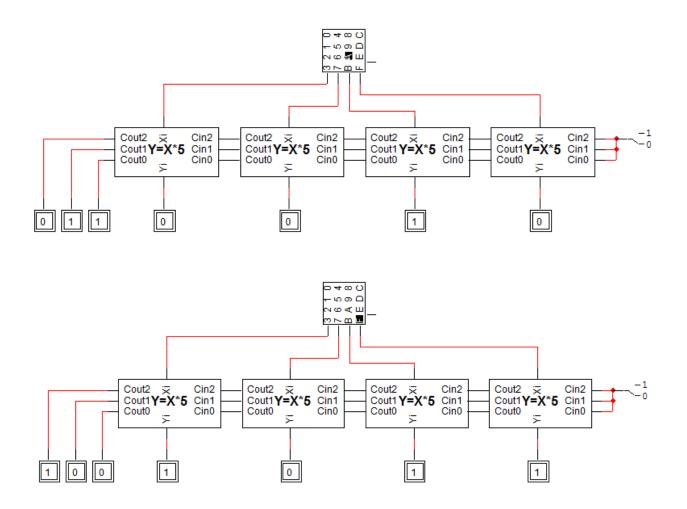
Q1. $f = abc + \overline{a}\overline{b}\overline{c}$ g = ab + \overline{a}c (i) $f = \overline{a}\overline{b}[\overline{c}] + \overline{a}b[\overline{o}]$ + $\overline{a}\overline{b}[\overline{o}] + \overline{a}b[\overline{c}]$ $\overline{c} - \overline{b} - \overline{c}$ $\overline{c} - \overline{b} - \overline{c}$


(iii)
$$g = ab [c] + ab [c] = ab + abc + abc$$

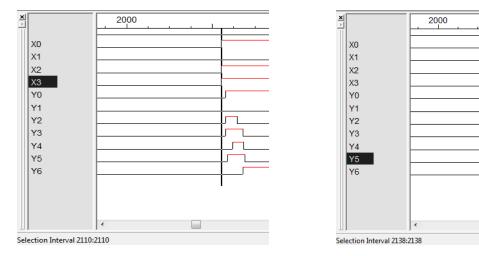
Q2. Y = 5 x X


....

XI	Cin 2	CINI	Cino	(Cont 2	Contl		
	0	O	~		0	0	00	
0	0	0	1		0	00	1	~ ~
0	0	l	0		0	0	i	
0	0	1	1					
ð	1	Ð	0		0	(0	0
0	١	0	l		-			_
0	(۱	0		-	-		
0			_ I					
l.	0	0	0		0	1	0	ł
1	C	0	١		0	1	١	9
1	0	١	3		0	١	(١
	0	1			<u> </u>	0	0	0
١	(0	0		I.	0	0	1
۱.	1	0.	0		-			_
1	1	i i	1				_	-
ı	1	1						


(III)

- 3-



(iv)

(v) To simplify the analysis, I add an inverter delay to any gate that has one of the inputs inverted. A very quick analysis by computing the longest delay across one cell, one can deduce that the longest delay across a cell is 7. Thus, having 4 cells the worst case delay is estimated to be 4*7=28.

(vi) To verify our analysis we changed X from 0 to 13 and computed the difference from the time X has changed (=2110) to the time when Y3 has changed (=2138) giving a total delay =2138-2110=28.

