COE 405, Term 152

Design \& Modeling of Digital Systems

HW\# 1

Due date: Thursday, Feb. 11

Q.1. Consider the two functions $\mathrm{f}=\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c}$ and $\mathrm{g}=\mathrm{ab}+\mathrm{ac}+\mathrm{bc}$.
(i) Implement the function g using only 2×1 MUXs.
(ii) Compute the function $\mathrm{f} \oplus \mathrm{g}$ based on orthonormal basis expansion.
Q.2. It is required to design a combinational circuit that computes the equation $\mathrm{Y}=3 * \mathrm{X}-1$, where X is an n -bit signed 2 's complement number.
(i) Design the circuit as a modular circuit where each module receives a single bit of the input, X_{i}.
(ii) Derive the truth table of your 1-bit module in (i).
(iii) Derive minimized two-level sum-of-product equations for your 1-bit module circuit.
(iv) Verify the correctness of your design by modeling and simulating a circuit to compute the required equation assuming X is a 4-bit number using logicworks.

This assignment can be solved based on a group of two students. The solution should be well organized. Submit a soft copy of your solution in a zip file including your logicworks files. Your solution should be submitted in a word file that contains the following items:
i. Your name and ID
ii. Assignment number
iii. Problem statement
iv. Your solution
v. Include snapshots of simulation output to illustrate the correctness of your solution.

