COE 405, Term 122

Design \& Modeling of Digital Systems

HW\# 1

Due date: Monday, Feb. 18

Q.1. Consider the two functions $\mathrm{f}=(\mathrm{a}+\mathrm{bc})\left(\mathrm{a}^{\prime}+\mathrm{cd}\right)$ and $\mathrm{g}=(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})$.
(i) Implement the function f using a single 4 x 1 MUX.
(ii) Compute the complement of f.
(iii) Compute the function $\mathrm{f} \oplus \mathrm{g}$ based on orthonormal basis expansion.
Q.2. You are required to design a circuit that computes the remainder of dividing a 4-bit number by 3 . For example, if the input is 1010 the circuit produces a remainder output of 01 and if the input is 1111 the circuit produces an output of 00 .
(i) Derive the truth table of your circuit.
(ii) Using k-map simplification, find the minimum sum-of-products expressions for each of the output signals.
(iii) Perform multilevel optimizations if possible.
(iv) Model your circuit using logic works and verify that it is working properly by simulation. Provide a snapshot of your simulation waveform.
Q.3. You are required to design a circuit that computes the remainder of dividing a N-bit number by 3 , where N is a multiple of 4 -bit numbers. The design needs to be modular in such a way that you design a cell that computes the remainder of dividing a 4-bit number by 3 , and use this cell to construct the required circuit.
(i) Derive the truth table of your basic cell.
(ii) Using k-map simplification, find the minimum sum-of-products expressions for each of the output signals.
(iii) Perform multilevel optimizations if possible.
(iv) Model your cell using logic works and verify that it is working properly by simulation. Provide a snapshot of your simulation waveform.
(v) Using your design cell, construct a circuit that computes the remainder of dividing an 8 -bit number by 3 . Verify the correct functionality of your circuit by simulation.

