COMPUTER ENGINEERING DEPARTMENT

COE 405

DESIGN & MODELING OF DIGITAL SYSTEMS

Midterm Exam

Second Semester (152)

Time: 7:30-10:00 PM

Student Name : KEY

Student ID. :_____

Question	Max Points	Score
Q1	12	
Q2	12	
Q3	8	
Q4	8	
Q5	7	
Q6	18	
Q7	10	
Total	75	

Dr. Aiman El-Maleh

(Q1) Consider the function: $F(A, B, C, D) = ABCD + AB\overline{CD} + \overline{ABCD} + \overline{ABCD}$

(i) Compute the expansion of *F* using the **Orthonormal Basis** { $\varnothing_1 = AB$, $\varnothing_2 = \overline{AB}$, $\varnothing_3 = A\overline{B}$, $\varnothing_4 = AB$ }.

F = A'B' (C'D+CD') + A'B (0) + AB' (0) + AB (CD+C'D')

(ii) Compute the function \overline{F} utilizing the orthonormal based expansion of the function.

F' = A'B' (C'D'+CD) + A'B (1) + AB' (1) + AB (C'D+CD')

(iii) Implement the function F using <u>minimal</u> number of 2x1 MUXs and inverters.

$$\begin{split} F &= A' \left[B' \left[C'D + CD' \right] + B[0] \right] + A[B'[0] + B[CD + C'D'] \right] \\ Let X &= C'D + CD' = C'[D] + C[D'] \\ F &= A' \left[B' \left[X \right] + B[0] \right] + A[B'[0] + B[X']] \end{split}$$

(iv) Suppose that the function F is part of a circuit whose output is Y as shown below. Simplify the equation of F into a minimal sum-of-products representation.

We have in the example AB' as don't care condition. We simplify F using the don't care condition as follows:

	00	01	11	10
00	0 0	1 1	03	1 2
01	04	05	0 7	06
11	1 12	0 13	1 15	0 14
10	? 8	? 9	?11	? 10

F = B'C'D + B'CD' + ACD + AC'D'

(Q2) It is required to design an <u>iterative</u> combinational circuit that receives an **n-bit** signed 2's complement number X and computes the equation Y=3*X-2. The design should be based on a one-bit cell (i.e. processing one bit X_i) that can be copied n times to construct the n-bit design.

(i) Determine the inputs and outputs for a one-bit cell. Clearly explain the meaning of signal values for the interface signals between the cells.

We will model Y=3X-2 as Y=3X+(-1)+)(-1). Since -1 in 2's complement is 111...111, this implies adding 2 for every bit. Thus, we need to represent carry outs from 0 to 4. Thus, we need 3 signals to represent the carry outs in the interface between cells. The mean of the signal values is illustrated below:

1

0

Carry=3

Carry=4

(ii) Derive the truth table for a one-bit cell.

1

0

0

1

C2 _{i-1}	C1 _{i-1}	C0 _{i-1}	Xi	C2 _i	C1 _i	C0 _i	Yi
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	0	1	1	0	0	1
1	0	1	0	X	X	Х	Х
1	0	1	1	X	X	Х	Х
1	1	0	0	X	X	Х	Х
1	1	0	1	X	X	Х	Х
1	1	1	0	X	X	Х	Х
1	1	1	1	Х	Х	Х	Х

(iii) Show the block diagram for a 3-bit design.

Present State	Next	t State, Z
	X=0	X=1
SO	S1, 0	S2, 0
S1	S4, 0	S3, 0
S2	S2, 0	S5, 1
S3	S3, 0	S2, 1
S4	S0, 0	S5, 0
S5	S3, 0	S5, 1

(Q3) Consider the given FSM that has 6 states, one input (X) and one output (Z), represented by the following state table:

(i) Determine the equivalent states.

S 1	(1,4), (2,3)				
S2	\backslash	\searrow		_	
S 3	\backslash	\searrow	(2,5)		_
S4	(0,1), (2,5)	(0,4), (3,5)			
S5	\backslash		(2,3)	(2,5)	
	S 0	S1	<u>S</u> 2	S3	S4

Equivalent state pairs: (S0,S1), (S0, S4), (S1, S4), (S2, S3), (S2,S5), (S3, S5) Thus, equivalent states are: (S0, S1, S4) and (S2, S3, S5)

(ii) Reduce the state table into the minimum number of states and show the reduced state table.

Reduced State Table:

We will rename the equivalent states (S0, S1, S4) as S0' and the equivalent states (S2, S3, S5) as S1'.

Present State	Next	t State, Z
	X=0	X=1
S0'	S0', 0	S1', 0
S1'	S1', 0	S1', 1

(Q4) Consider the sequential circuit given below having 4 inputs $\{A, B, C, D\}$ and one output $\{X\}$. Assume that the delay of an inverter is 1 unit delay, the delay of a 2-input NAND gate is 2 unit delays, the delay of a 2-input NOR gate is 2 unit delays and the delay of a 2-input XOR gate is 3 unit delays.

(i) Determine the critical path of this circuit and the maximum propagation delay.

The maximum propagation delay is 12 and there are two critical paths as follows: {G5, G6, G7, G8, G1}, {G4, G6, G7, G8, G1},

(ii) Using only the **Retiming** transformation, <u>minimize</u> the critical path of this circuit with the minimum number of flip-flops possible. Determine the maximum propagation delay after retiming.

We can apply the following retiming transformations to reduce the critical path:

- Retime G5 by -1 (forward retiming)
- Retime G4 by -1 (forward retiming)
- Retime G1 by +1 (backward retiming)
- Retime G8 by +1 (backward retiming)
- Retime the stem on fanout of G2 by +1 (backward retiming)

Page 8 of 13

The resulting retiming circuit is as follows which has a maximum propagation delay of 6 with only 4 FFs.

[7 Points]

(Q5) It is required to design a synchronous sequential circuit that receives a stream of data serially through input **X** and produces output values through the two outputs Z1Z0. The circuit produces an output value of 01 if it receives a 0-1-0 pulse of one cycle length, produces an output value of 10 if it receives a 0-1-0 pulse of two cycles length and produces and output value of 11 if it receives a 0-1-0 pulse of length of three cycles or more. Otherwise, the circuit produces an output value of 00. Assume the existence of an asynchronous reset input to reset the machine to a reset state. Draw the state diagram of the circuit assuming a <u>Mealy</u> model with <u>minimum</u> number of states. *You are not required to derive the equations and the circuit*. The following is an example of input and output stream:

Example:

Input	X	100101100111100
Output	ZO	000010000000010
1	Z1	0000001000010

State Diagram:

(Q6) The ASMD chart and the block diagram given below show the datapath and controller for a machine that transfers two 4-bit signed numbers in 2's complement representation into registers AR and BR, divides the number in AR by 2 and transfers the result to register CR if the number in AR is negative, multiplies the number in BR by 2 and transfers the result to register CR if the number in AR is positive but non-zero, and if the number in AR is zero, clears register CR to 0.

 Clr_CR

...

16

CR

done

1

reset_b

clock

(i) Show the design of the data-path unit.

(ii) Show the design of the control unit using the following state assignment: S0=0, S1 = 1.

C.S.		Input		N.S.	Output				
	start	$GZ(AR_gt_0)$	$LZ(AR_lt_0)$		Done	LD_AR_BR	Div_AR_x2	Mul_AR_x2	Clr_CR
S 0	0	Х	Х	S 0	1	0	0	0	0
S 0	1	Х	Х	S1	1	1	0	0	0
S1	х	Х	1	S 0	0	0	1	0	0
S 1	х	1	0	S 0	0	0	0	1	0
S1	х	0	0	S0	0	0	0	0	1

Control Unit:

We assume the state assignment S0=0 and S1=1.

	00	01	11	10		
00	0 0	0 1	? 3	02		
01	14	15	? 7	16		
11	0 12	0 13	? 15	0 14		
10	08	09	?11	0 10		
F+ = F' Start						

Done = F'LD_AR_BR = F' Start

	00	01	11	10
00	0 0	0 1	? 3	02
01	04	05	? 7	06
11	0 12	1 13	? 15	0 14
10	08	19	?11	0 10
DIV	_AR_	_x2 =	F LT	

	00	01	11	10
00	0 0	0 1	? 3	02
01	04	05	? 7	06
11	0 12	0 13	? 15	1 14
10	08	09	?11	1 10
MUI	L_BR	_x2 =	FG	Г

	00	01	11	10			
00	0 0	0 1	? 3	0 2			
01	04	05	? 7	0 6			
11	1 12	0 13	? 15	0 14			
10	1 8	09	?11	0 10			
CLR	$CLR_CR = F GT' LT'$						

[10 Points]

(Q7) It is required to design a circuit that counts the number of data transitions (i.e. $0 \rightarrow 1$ and $1 \rightarrow 0$ data changes) through a stream of 128 bit data. The data is applied serially through an input X once the user presses a *Start* button, where the first bit is transmitted in the same cycle the *Start* button is asserted. Once the computation is finsihed the machine asserts a *Done* signal which remains asserted until the user presses the Start button again or resets the machine. Assume that the machine has Asynchronous *Reset* input. Show the ASMD chart for this machine.

