COMPUTER ENGINEERING DEPARTMENT

COE 405

DESIGN \& MODELING OF DIGITAL SYSTEMS

Midterm Exam

Second Semester (152)

Time: 7:30-10:00 PM

Student Name : KEY

Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{1 2}$	
Q2	$\mathbf{1 2}$	
Q3	$\mathbf{8}$	
Q4	$\mathbf{8}$	
Q5	7	
Q6	$\mathbf{1 8}$	
Q7	10	
Total	$\mathbf{7 5}$	

(Q1) Consider the function: $F(A, B, C, D)=A B C D+A B \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}$
(i) Compute the expansion of F using the Orthonormal Basis $\left\{\varnothing_{1}=\bar{A} \bar{B}\right.$, $\left.\varnothing_{2}=\bar{A} B, \varnothing_{3}=A \bar{B}, \varnothing_{4}=A B\right\}$.
$\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}\left(\mathrm{C}^{\prime} \mathrm{D}+\mathrm{CD}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{B}(0)+\mathrm{AB}^{\prime}(0)+\mathrm{AB}\left(\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}\right)$
(ii) Compute the function \bar{F} utilizing the orthonormal based expansion of the function.

$$
\mathrm{F}^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}\left(\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{CD}\right)+\mathrm{A}^{\prime} \mathrm{B}(1)+\mathrm{AB}^{\prime}(1)+\mathrm{AB}\left(\mathrm{C}^{\prime} \mathrm{D}+\mathrm{CD}^{\prime}\right)
$$

(iii) Implement the function F using $\underline{\text { minimal number of } 2 \times 1 \text { MUXs and inverters. }}$

$$
\begin{aligned}
& \mathrm{F}=\mathrm{A}^{\prime}\left[\mathrm{B}^{\prime}\left[\mathrm{C}^{\prime} \mathrm{D}+\mathrm{CD} \mathrm{D}^{\prime}\right]+\mathrm{B}[0]\right]+\mathrm{A}\left[\mathrm{~B}^{\prime}[0]+\mathrm{B}\left[\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}\right]\right] \\
& \text { Let } \mathrm{X}=\mathrm{C}^{\prime} \mathrm{D}+\mathrm{CD}=\mathrm{C}^{\prime}[\mathrm{D}]+\mathrm{C}\left[\mathrm{D}^{\prime}\right] \\
& \mathrm{F}=\mathrm{A}^{\prime}\left[\mathrm{B}^{\prime}[\mathrm{X}]+\mathrm{B}[0]\right]+\mathrm{A}\left[\mathrm{~B}^{\prime}[0]+\mathrm{B}\left[\mathrm{X}^{\prime}\right]\right]
\end{aligned}
$$

(iv) Suppose that the function F is part of a circuit whose output is Y as shown below. Simplify the equation of F into a minimal sum-of-products representation.

We have in the example AB^{\prime} as don't care condition. We simplify F using the don't care condition as follows:

	00	01	11	10
00	00	11	03	12
01	04	05	07	06
11	112	013	115	014
10	? 8	? 9	? 11	? 10

$\mathrm{F}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{ACD}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime}$
(Q2) It is required to design an iterative combinational circuit that receives an \mathbf{n}-bit signed 2 's complement number X and computes the equation $\mathrm{Y}=3^{*} \mathrm{X}-2$. The design should be based on a one-bit cell (i.e. processing one bit X_{i}) that can be copied n times to construct the n -bit design.
(i) Determine the inputs and outputs for a one-bit cell. Clearly explain the meaning of signal values for the interface signals between the cells.

We will model $\mathrm{Y}=3 \mathrm{X}-2$ as $\mathrm{Y}=3 \mathrm{X}+(-1)+)(-1)$. Since -1 in 2 's complement is 111...111, this implies adding 2 for every bit. Thus, we need to represent carry outs from 0 to 4 . Thus, we need 3 signals to represent the carry outs in the interface between cells. The mean of the signal values is illustrated below:

C2	C1	C0	Meaning
0	0	0	Carry $=0$
0	0	1	Carry $=1$
0	1	0	Carry $=2$
0	1	1	Carry $=3$
1	0	0	Carry $=4$

(ii) Derive the truth table for a one-bit cell.

$\mathrm{C} 2_{\mathrm{i}-1}$	$\mathrm{C} 1_{\mathrm{i}-1}$	$\mathrm{C} 0_{\mathrm{i}-1}$	X_{i}	$\mathrm{C} 2_{\mathrm{i}}$	$\mathrm{C} 1_{\mathrm{i}}$	$\mathrm{C} 0_{\mathrm{i}}$	Y_{i}
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	0	1	1	0	0	1
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

(iii) Show the block diagram for a 3-bit design.

(Q3) Consider the given FSM that has 6 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z	
	$\mathbf{X = 0}$	$\mathbf{X}=\mathbf{1}$
S0	$\mathrm{S} 1,0$	$\mathrm{~S} 2,0$
S 1	$\mathrm{~S} 4,0$	$\mathrm{~S} 3,0$
S 2	$\mathrm{~S} 2,0$	$\mathrm{~S} 5,1$
S 3	$\mathrm{~S} 3,0$	$\mathrm{~S} 2,1$
S 4	$\mathrm{~S} 0,0$	$\mathrm{~S} 5,0$
S5	$\mathrm{S} 3,0$	$\mathrm{~S} 5,1$

(i) Determine the equivalent states.

Equivalent state pairs: (S0,S1), (S0, S4), (S1, S4), (S2, S3), (S2,S5), (S3, S5)
Thus, equivalent states are: (S0, S1, S4) and (S2, S3, S5)
(ii) Reduce the state table into the minimum number of states and show the reduced state table.

Reduced State Table:
We will rename the equivalent states ($\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 4$) as S 0 ' and the equivalent states ($\mathrm{S} 2, \mathrm{~S} 3, \mathrm{~S} 5$) as $\mathrm{S} 1^{\prime}$.

Present State	Next State, Z	
	$\mathbf{X = 0}$	$\mathbf{X}=\mathbf{1}$
S^{\prime}	$\mathrm{S} 0^{\prime}, 0$	$\mathrm{~S} 1^{\prime}, 0$
$\mathrm{~S}^{\prime}$	$\mathrm{S} 1^{\prime}, 0$	$\mathrm{~S} 1^{\prime}, 1$

(Q4) Consider the sequential circuit given below having 4 inputs $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ and one output $\{\mathrm{X}\}$. Assume that the delay of an inverter is 1 unit delay, the delay of a 2 -input NAND gate is 2 unit delays, the delay of a 2 -input NOR gate is 2 unit delays and the delay of a 2 -input XOR gate is 3 unit delays.

(i) Determine the critical path of this circuit and the maximum propagation delay.

The maximum propagation delay is 12 and there are two critical paths as follows: \{G5, G6, G7, G8, G1\}, \{G4, G6, G7, G8, G1 \},
(ii) Using only the Retiming transformation, minimize the critical path of this circuit with the minimum number of flip-flops possible. Determine the maximum propagation delay after retiming.

We can apply the following retiming transformations to reduce the critical path:

- Retime G5 by -1 (forward retiming)
- Retime G4 by -1 (forward retiming)
- Retime G1 by +1 (backward retiming)
- Retime G8 by +1 (backward retiming)
- Retime the stem on fanout of G2 by +1 (backward retiming)

Page 8 of 13
The resulting retiming circuit is as follows which has a maximum propagation delay of 6 with only 4 FFs.

(Q5) It is required to design a synchronous sequential circuit that receives a stream of data serially through input \mathbf{X} and produces output values through the two outputs Z1Z0. The circuit produces an output value of 01 if it receives a $0-1-0$ pulse of one cycle length, produces an output value of 10 if it receives a $0-1-0$ pulse of two cycles length and produces and output value of 11 if it receives a 0-1-0 pulse of length of three cycles or more. Otherwise, the circuit produces an output value of 00 . Assume the existence of an asynchronous reset input to reset the machine to a reset state. Draw the state diagram of the circuit assuming a Mealy model with minimum number of states. You are not required to derive the equations and the circuit. The following is an example of input and output stream:

Example:

| Input | \mathbf{X} | 100101100111100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Output | $\mathbf{Z 0}$ | 000010000000010 |
| | $\mathbf{Z 1}$ | 0000000010000010 |

State Diagram:

$0 / 11$
(Q6) The ASMD chart and the block diagram given below show the datapath and controller for a machine that transfers two 4-bit signed numbers in 2's complement representation into registers $A R$ and $B R$, divides the number in AR by 2 and transfers the result to register CR if the number in AR is negative, multiplies the number in BR by 2 and transfers the result to register CR if the number in $A R$ is positive but non-zero, and if the number in $A R$ is zero, clears register CR to 0 .

Note: Division by 2 of a Number represented in $2 s$ complement format

Note: Multiplication by 2 of a positive number represented in 16 -bit $2 s$ complement format

(i) Show the design of the data-path unit.

(ii) Show the design of the control unit using the following state assignment: $S 0=0, S 1$ $=1$.

Control Unit:

C.S.	Input				N.S.		Output				
	start	GZ(AR_gt_0)	LZ(AR_lt_0)		Done	LD_AR_BR	Div_AR_x2	Mul_AR_x2	Clr_CR		
S0	0	x	x	S 0	1	0	0	0	0		
S0	1	x	x	S 1	1	1	0	0	0		
S1	x	x	1	S 0	0	0	1	0	0		
S1	x	1	0	S 0	0	0	0	1	0		
S1	x	0	0	S0	0	0	0	0	1		

We assume the state assignment $\mathrm{S} 0=0$ and $\mathrm{S} 1=1$.

	00	01	11	10
00	0	01	? 3	02
01	14	15	? 7	16
11	012	013	? 15	014
10	08	09	? 11	010

$\mathrm{F}+=\mathrm{F}^{\prime}$ Start
Done $=\mathrm{F}^{\prime}$
LD_AR_BR = F' Start

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	0	0	0	1
$\mathbf{?}$	3	0	2	
$\mathbf{0 1}$	0	4	0	5
$?$	$?$	0	6	
$\mathbf{1 1}$	0	12	1_{13}	$?_{15}$
$\mathbf{1 0}$	0	0_{14}	1	$?_{11}$

DIV_AR_x2 = F LT

	00	01	11	10
00	00	01	? 3	02
01	04	05	? 7	06
11	012	013	? 15	114
10	08	09	? 11	1

MUL_BR_x2 = F GT

	00	01	11	10
00	00	01	? 3	02
01	04	05	? 7	06
11	112	013	? 15	014
10	18	09	? 11	0
CLR_CR = F GT				

(Q7) It is required to design a circuit that counts the number of data transitions (i.e. $0 \rightarrow 1$ and $1 \rightarrow 0$ data changes) through a stream of 128 bit data. The data is applied serially through an input X once the user presses a Start button, where the first bit is transmitted in the same cycle the Start button is asserted. Once the computation is finsihed the machine asserts a Done signal which remains asserted until the user presses the Start button again or resets the machine. Assume that the machine has Asynchronous Reset input. Show the ASMD chart for this machine.

