KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 405 Design and Modeling of Digital Systems

Term 181 Lecture Breakdown

Lec #	Date	Topics	Ref.
1	U 2/9	Syllabus & Course Introduction. Introduction to Digital Design Methodology.	Chapter 1
2	T 4/9	Digital System Design Cycle, Architecture Design Example.	Chapter 1
3	TH 6/9	Architecture Design Example. Design Space and Evaluation Space, Digital System Complexity. Dealing with Design Complexity, Design Hierarchy, Abstractions, Design Domains & Levels of Abstraction, Design Methods.	Chapter 1
4	U 9/9	Design Methods. Design vs. Synthesis, Synthesis Process, Circuit Synthesis. Hardware Description Languages, Design Automation & CAD Tools.	Chapter 1
5	T 11/9	Definitions: implicant, Prime Implicant, Essential Prime Implicant. Minimum cover, Minimal cover or irredundant cover. Sum of Product (SOP) Simplification Procedure. Shannon's Expansion, Boolean Expansion Based on Orthonormal Basis.	Chapter 2
6	TH 13/9	Boolean Expansion Based on Orthonormal Basis. Don't Care Conditions. SOP Simplification Procedure using Don't Cares, Product of Sum (POS) Simplification.	Chapter 2
7	U 16/9	SOP Simplification Procedure using Don't Cares. Combinational Circuits Design Procedure, Iterative Design.	Chapter 2
8	T 18/9	Iterative Design. Decoders, Implementing Functions using Decoders. Multiplexers, Implementing Functions using Multiplexers.	Chapter 2
9	TH 20/9	(Quiz#1)	
	U 23/9	National Day Holiday	
10	T 25/9	Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation.	4.1-4.2

		Ouganization of a Toothonah for Varifying a	4 2 4 4
11	TH 27/9	Organization of a Testbench for Verifying a	4.2-4.4
		Unit Under Test (UUT), Testbench Template,	
		Propagation Delay, Inertial Delay, Assign	
		Statement, Propagation Delay & Continuous	
		Assignment. Verilog Generate Constructs,	
		Verilog Generate Loop.	CI
12	S 29/9	Conditional If-Generate & Case-Generate.	Chapter 3
		Sequential Circuit Models: Mealy vs. Moore.	
		D-Latch, D-FF, Synchronous vs.	
		Asynchronous Reset, Sequential Circuit	
		Design.	
13	U 30/9	Sequential Circuit Design Examples. State	Chapter 3
		Minimization.	
14	T 2/10	State Minimization: Partition refinement	Chapter 3
		method, implication chart method.	
15	TH 4/10	State encoding. Sequential Circuit Timing,	Chapter 3
		Timing Constraints, FF set up time, Clock to Q	
		delay, FF hold time, Clock Skew. Peak to Peak	
		Jitter.	
16	U 7/10	Hold Time violation, metastability,	Chapter 3
		synchronizing flip-flops. (Quiz#2)	
17	T 9/10	Behavioral Modeling, Data Types for	5.1-5.3
		Behavioral Modeling, Assign Statement,	
		Verilog Operators, Always Block, Procedural	
		Assignment.	
18	TH 11/10	Tutorial on using FPGA Board.	
	TH 11/10	Last Day for Dropping with W	
19	U 14/10	Wire vs. Reg, Algorithm-Based Models, if	5.6-5.9
		statement, Case statement. Behavioral Models	
		statement, Case statement. Benavioral wiodels	
		of Multiplexor, Encoder, Decoder. D Latch, D	
		of Multiplexor, Encoder, Decoder. D Latch, D	
		of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset).	
20	T 16/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral	5.6-5.11, 5.14
20		of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor.	5.6-5.11, 5.14
20		of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder,	5.6-5.11, 5.14
	T 16/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder,	5.6-5.11, 5.14
20		of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench.	5.6-5.11, 5.14
	T 16/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register,	5.6-5.11, 5.14
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter,	5.6-5.11, 5.14
	T 16/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3)	
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data	
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers,	
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers, Modulo N (i.e. divide by N) Counters.	
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers, Modulo N (i.e. divide by N) Counters. Counters as Clock frequency dividers. Three-	
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers, Modulo N (i.e. divide by N) Counters. Counters as Clock frequency dividers. Three-State Devices, A Register Bank with a 4-bit	
21	T 16/10 TH 18/10 U 21/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers, Modulo N (i.e. divide by N) Counters. Counters as Clock frequency dividers. Three-State Devices, A Register Bank with a 4-bit Data Bus, Design Steps. Digital System Design	
21	T 16/10 TH 18/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers, Modulo N (i.e. divide by N) Counters. Counters as Clock frequency dividers. Three-State Devices, A Register Bank with a 4-bit Data Bus, Design Steps. Digital System Design Example: Traffic Light Controller.	5.14-5.15
21 22	T 16/10 TH 18/10 U 21/10	of Multiplexor, Encoder, Decoder. D Latch, D Flip-flop (synchronous & asynchronous reset). Data Flow/ RTL Models: Shifter. Behavioral Models of Multiplexor. Behavioral Models of Multiplexor. Encoder, Decoder. Seven Segment Display Decoder, FSM Modeling, FSM Test Bench. Parallel Load Register. Shift Register, MultiFunction Register, Up-Down Counter, Up-Down Counter: Testbench. (Quiz#3) Data Path & Control Unit Partitioning, Data Path Design, Registers, Shift Registers, Modulo N (i.e. divide by N) Counters. Counters as Clock frequency dividers. Three-State Devices, A Register Bank with a 4-bit Data Bus, Design Steps. Digital System Design Example: Traffic Light Controller.	5.14-5.15

		Architecture/Data Processor, Implementing	
24	TH 25/10	Controller. ASM Chart => Controller, ASM Chart => Architecture/Data Processor, Implementing Controller, Algorithmic State Machine and DataPath (ASMD) Chart, ASMD Chart for 4-bit Counter. Design Examples: 2:1 Decimator, One's Count Circuit.	5.14-5.15
	S 27/10	Midterm Exam	
25	U 28/10	Midterm Exam Solution. One's Count Circuit. Implementation of Data Path and Control Units of One's Count Circuit.	5.14-5.15
26	T 30/10	Scores Avg., Max. & Min., Counting Number of Elements ≥Target Value.	5.14-5.15
27	TH 1/11	Design Examples: Counting Number of Elements ≥Target Value, Election Circuit.	5.14-5.15
28	U 4/11	Register File & Memory Modeling. Design Examples: Transition Counting Circuit, Average of Serial Scores.	5.14-5.15
29	T 6/11	Design Examples: A Simple Network DeMux, Sequential Signed Multiplier.	
30	TH 8/11	Design Examples: Sequential Unsigned Divider. Behavioral Modeling of ASM, Linear Feedback Shift Register (LFSR), LFSR Modeling, Repetitive Algorithms: for loop. Adder/Subtracter, Modeling Unsigned Division using for loop.	5.9-5.11
	TH 8/11	Last Day for Dropping all Courses with W	
31	U 11/11	Modeling Signed Multiplication using for loop. Repetitive Algorithms: repeat loop, while loop, disable, forever. Tasks and Functions.	5.11-5.13
32	T 13/11	(Quiz#4)	
33	TH 15/11	File I/O system functions and tasks. Programmable Logic and Storage Devices: History of Computational Fabrics.	Chapter 8
34	U 18/11	ASIC vs. FPGA, FPGA Advantages, Reconfigurable Logic, Anti-Fuse-Based Approach. RAM Based Field Programmable Logic, Xilinx FPGA Families, The Xilinx 4000 CLB. LUT Mapping, Configuring the CLB as a RAM, FPGA Interconnect, Basic I/O Block Structure, CLB Structure, 5-Input Functions, Distributed RAM.	Chapter 8
35	T 20/11	Distributed RAM., Shift Register, Carry & Control Logic. Adder Implementation, Carry Chain, 18 x 18 Embedded Multiplier. FPGA Design Flow – Mapping, Placement & Route. Memory Types, FPGA Memory Implementation, LUT-Based RAMS.	Chapter 8

36	TH 22/11	Block RAM. Block RAM Logic Diagram, Block RAM Data Combinations and ADDR Locations, Read & Write Operations, Write Modes, Conflict Avoidance, Using Core Generator.	Chapter 8
37	U 25/11	Using IP Core Generator. (Quiz#5)	
38	T 27/11	Using IP Core Generator. Circuit Synthesis, Multilevel logic synthesis, Logic Network modeling. Network Optimization, Area and Delay estimation.	6.1
39	TH 29/11	Multilevel Logic Transformations: Elimination, Decomposition, Factoring.	6.1
40	U 2/12	Multilevel Logic Transformations: Extraction, Simplification, Substitution, Fast Extraction. Synthesis & Testability.	6.1
41	T 4/12	Synthesis & Testability. Timing Issues in Multiple-Level Logic Optimization. Network Delay Modeling, topological critical path, false path, Algorithms for Delay Minimization.	6.1
42	TH 6/12	Algorithms for Delay Minimization. Behavioral or High-Level Synthesis: CDFG, scheduling, allocation. High-Level Synthesis Examples. Synthesis of Combinational Logic.	6.1
	TH 6/12	Dropping all Courses with WP/WF	
43	U 9/12	(Quiz#6)	
44	T 11/12	Synthesis of Priority Structures. Exploiting Logical Don't Care Conditions, Resource Sharing, Synthesis of Sequential Logic with Latches. Synthesis of Three-State Devices and Bus Interfaces, Synthesis of Sequential Logic with Flip-Flops. Synthesis of Explicit State Machine. Exploiting Logical Don't Care Conditions. Synthesis of Gated Clocks and Clock Enable, Operator Grouping, Expression Substitution, Synthesis of loops.	6.1-6.6
45	TH 13/12	No Class	