KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 405 Design and Modeling of Digital Systems

Term 152 Lecture Breakdown

Lec	Date	Topics	Ref.
#			
1	U 17/1	Syllabus & Course Introduction. Introduction to Digital Design Methodology.	Chapter 1
2	T 19/1	Digital System Design Cycle, Architecture Design Example.	Chapter 1
3	TH 21/1	Design Space and Evaluation Space, Digital System Complexity. Dealing with Design Complexity, Design Hierarchy, Abstractions, Design Domains & Levels of Abstraction, Design Methods.	Chapter 1
4	U 24/1	Design vs. Synthesis, Synthesis Process, Circuit Synthesis, Hardware Description Languages, Design Automation & CAD Tools. Definitions: implicant, Prime Implicant, Essential Prime Implicant.	Chapter 1
5	T 26/1	Minimum cover, Minimal cover or irredundant cover. Sum of Product (SOP) Simplification Procedure.	Chapter 2
6	TH 28/1	Shannon's Expansion, Boolean Expansion Based on Orthonormal Basis. Don't Care Conditions.	Chapter 2
7	U 31/1	SOP Simplification Procedure using Don't Cares, Product of Sum (POS) Simplification. Combinational Circuits Design Procedure, Iterative Design.	Chapter 2
8	T 2/2	Decoders, Implementing Functions using Decoders. Multiplexers, Implementing Functions using Multiplexers. Using Adder for comparing signed and unsigned numbers. Sequential Circuit Model.	Chapter 2 & 3
9	TH 4/2	Timing of Sequential Circuits, Latches and Flip-Flops, Sequential Circuit Design Procedure. Sequential Circuit Design Examples.	Chapter 3
10	U 7/2	Sequential Circuit Design Examples.	Chapter 3
11	T 9/2	State Minimization.	Chapter 3
12	TH 11/2	State Minimization, Retiming. (Quiz#1)	Chapter 3

13	U 14/2	Retiming, Sequential Circuit Timing, Timing	Chapter 3
		Constraints, FF set up time, Clock to Q delay,	
		FF hold time, Clock Skew, Peak to Peak Jitter,	
		Hold Time violation, metastability,	
		synchronizing flip-flops.	
14	T 16/2	Data Path & Control Unit Partitioning, Data	
		Path Design, Registers, Shift Registers,	
		Modulo N (i.e. divide by N) Counters.	
		Counters as Clock frequency dividers.	
15	TH 18/2	Three-State Devices, A Register Bank with a 4-	
		bit Data Bus, Design Steps. Digital System	
		Design Example: Traffic Light Controller.	- 1 4 - 1 -
16	U 21/2	Digital System Design Example: Traffic Light	5.14-5.15
		Controller. Algorithmic State Machine (ASM)	
		Chart, Timing in ASM Charts.	514515
17	T 23/2	ASM Chart => Controller, ASM Chart => Architecture/Data Processor Implementing	5.14-5.15
		Controller Algorithmic State Machine and	
		DataPath (ASMD) Chart ASMD Chart for 4-bit	
		Counter. 2:1 Decimator.	
18	тн 25/2	Implementation of Data Path and Control Unit	5.14-5.15
10	111 23/2	from ASMD Chart: 2:1 Decimator, One's Count	
		Circuit.	
	TH 25/2	Last Day for Dropping with W	
19	U 28/2	Implementation of Data Path and Control Units	5.14-5.15
		of One's Count Circuit. (Quiz#2)	
20	TT 1/2	Solution of Quiz#2	
	1 1/3	Solution of Quiz#2.	
21	TH 3/3	ASMD Chart Examples: Scores Avg., Max. &	5.14-5.15
21	TH 3/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data.	5.14-5.15
21	TH 3/3 S 5/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam	5.14-5.15
21	T 1/3 TH 3/3 S 5/3 U 6/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog. Why use HDL?.	5.14-5.15 4.1-4.2
21 22	T 1/3 TH 3/3 S 5/3 U 6/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling,	5.14-5.15 4.1-4.2
21	T 1/3 TH 3/3 S 5/3 U 6/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives.	5.14-5.15 4.1-4.2
21 22 23	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module	5.14-5.15 4.1-4.2 4.1-4.2
21 22 23	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation.	5.14-5.15 4.1-4.2 4.1-4.2
21 22 23 24	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4
21 22 23 24	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template,	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4
21 22 23 24	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4
21 22 23 24	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4
21 22 23 24 25	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3
21 22 23 24 25	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3
21 22 23 24 25	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement,	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3
21 22 23 24 25	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement, Verilog Operators.	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3
21 22 23 24 25 26	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3 T 22/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement, Verilog Operators. Propagation Delay & Continuous Assignment,	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3 5.4-5.6
21 22 23 24 25 26	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3 T 22/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement, Verilog Operators. Propagation Delay & Continuous Assignment, Always Block, Procedural Assignment, Wire	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3 5.4-5.6
21 22 23 24 25 26	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3 T 22/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement, Verilog Operators. Propagation Delay & Continuous Assignment, Always Block, Procedural Assignment, Wire vs. Reg, Algorithm-Based Models, if	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3 5.4-5.6
21 22 23 24 25 26	T 1/3 TH 3/3 S 5/3 U 6/3 T 8/3 TH 10/3 13-17/3 U 20/3 T 22/3	ASMD Chart Examples: Scores Avg., Max. & Min., Average Computation of Serial Data. Midterm Exam Introduction to Verilog, Why use HDL?, Definition of a Module. Gate-level modeling, Verilog primitives. Verilog Syntax, Verilog Data Types. Module instantiation. Organization of a Testbench for Verifying a Unit Under Test (UUT), Testbench Template, Propagation Delay, Inertial Delay Midterm Vacation Data Types for Behavioral Modeling, Boolean Equation-Based Behavioral Models of Combinational Logic, Assign Statement, Verilog Operators. Propagation Delay & Continuous Assignment, Always Block, Procedural Assignment, Wire vs. Reg, Algorithm-Based Models, if statement, Case statement.	5.14-5.15 4.1-4.2 4.1-4.2 4.2-4.4 5.1-5.3 5.4-5.6

28	U 27/3	Case statement, Behavioral Models of	5.6-5.9
		Multiplexor, Encoder, Decoder. D Latch, D	
		Flip-flop (synchronous & asynchronous reset),	56511
29	T 29/3	Models of Multiplevor Encoder Decoder	5.0-5.11
		Seven Segment Display Decoder Linear	
		Feedback Shift Register (LFSR)	
20	ТЦ 21/2	LESR Modeling, Repetitive Algorithms: for	5.9-5.11
50	111 31/3	loop. Parametrizable ripple carry adder using	
		for loop.	
	TH 31/3	Last Day for Dropping all Courses with W	
31	U 3/4	Repetitive Algorithms: repeat loop, while loop,	5.11-5.13
		disable, forever. Tasks and Functions.	
		(Quiz#3)	
32	T 5/4	Behavioral Modeling of Control Unit,	5.14-5.16
		Behavioral Models of Counters. Behavioral	
		Models of Sillit Registers. Darlet Siller,	
		I/O system functions and tasks	
33	тн 7//	File I/O system functions and tasks. Circuit	6.1
55	111 //4	Synthesis, Multilevel logic synthesis, Logic	
		Network modeling, Network Optimization,	
		Area and Delay estimation, Relation between	
		testability and redundancy, Multilevel Logic	
		Transformations: Elimination.	<u> </u>
34	U 10/4	Multilevel Logic Transformations:	6.1
		Elimination, Decomposition, Factoring,	
		Synthesis & Testability	
35	Т 12/4	Synthesis & Testability.	6.1
36	TH $1/A$	Timing Issues in Multiple-Level Logic	6.1
50	111 17/7	Optimization . (Quiz#4)	
37	U 17/4	Network Delay Modeling, topological critical	6.1
		path, false path, Algorithms for Delay	
		Minimization, Behavioral or High-Level	
		Synthesis: CDFG, scheduling, allocation.	6 1
38	T 19/4	scheduling allocation	0.1
20	тц 21/4	Tutorial on using LCD Screen.	
40	$\frac{11121/4}{1124/4}$	(O uiz#5)	
40	U 24/4	Solution of Ouiz#5 Synthesis of Combinational	61-66
41	1 20/4	Logic.	0.1 0.0
42	TH 28/4	Synthesis of Priority Structures. Exploiting	6.1-6.6
		Logical Don't Care Conditions, Resource	
		Sharing, Synthesis of Sequential Logic with	
		Latches. Using Xilinx IP CoreGen Tool.	
	TH 28/4	Dropping all Courses with WP/WF	

43	U 1/5	Synthesis of Three-State Devices and Bus	6.1-6.6
_		Interfaces, Synthesis of Sequential Logic with	Chapter 8
		Flip-Flops. Synthesis of Explicit State	
		Machine. Synthesis of Gated Clocks and Clock	
		Enable, Operator Grouping, Expression	
		Substitution, Synthesis of loops.	
		Programmable Logic and Storage Devices:	
		History of Computational Fabrics, ASIC vs.	
		FPGA, FPGA Advantages, Reconfigurable	
		Logic, Anti-Fuse-Based Approach.	
44	T 3/5	RAM Based Field Programmable Logic, Xilinx	Chapter 8
	2 0/0	FPGA Families, The Xilinx 4000 CLB. LUT	-
		Mapping, Configuring the CLB as a RAM,	
		FPGA Interconnect, Basic I/O Block Structure,	
		CLB Structure, 5-Input Functions, Distributed	
		RAM, Shift Register, Carry & Control Logic.	
45	TH 5/5	Adder Implementation, Carry Chain, 18 x 18	Chapter 8
		Embedded Multiplier. FPGA Design Flow -	
		Mapping, Placement & Route. Memory Types,	
		FPGA Memory Implementation, LUT-Based	
		RAMS, Block RAM. Block RAM Logic	
		Diagram, Block RAM Data Combinations and	
		ADDR Locations, Read & Write Operations,	
		Write Modes, Conflict Avoidance, Using Core	
		Generator.	