KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 405 Design and Modeling of Digital Systems Term 062 Lecture Breakdown

Lec#	Date	Topics	Ref.
1	S 17/2	Syllabus, Introduction, Digital system	Ch. 1
	5 1772	design cycle, Architecture design.	
2	M 19/2	Architecture Design Example: 8-bitadder,	Ch. 1
_	111 1912	Alternative adder designs including RCA,	
		CLA, Serial Adder, Design Space.	
3	W 21/2	Behavioral Synthesis: scheduling and	Ch. 1
		allocation, Digital system complexity,	
		Hierarchy, Abstraction, Design domains	
		and levels of abstractions, Design method,	
		Synthesis vs. Design, Synthesis process.	
4	S 24/2	Circuit Synthesis, Design Automation &	Ch. 1 & Ch. 2
		CAD tools, Hardware description	
		languages, Objectives & requirements of	
		VHDL, Styles in VHDL, Design flow in	
		VHDL, Simulation Process. VHDL Basics:	
		VHDL terms, Design entity. Entity	
		Examples.	
5	M 26/2	Design Architecture, Architecture	Ch. 2
		Examples: Full Adder, Ones count circuit.	
6	W 28/2	Alternative architectures for one's count	Ch. 2
		circuit: behavioral, dataflow, structural.	
		Elements of VHDL: Entity, Architecture,	
		Package, Library, Configuration.	CI 2
7	S 3/3	Top down design methodology, Recursive	Ch.3
		partitioning, Design verification, Top down	
		design of serial adder: 2x1 MUX, D-FF, 3-	
		bit Counter, Behavioral model of serial	
-	3.6.7.10	adder. Serial Adder First Level of Partitioning,	Ch.3
8	M 5/3	Shifter VHDL Description, Structural	CII.3
		Description of Serial Adder, Partitioning	
		Shifter, Synthesizable Serial Adder,	
		Subprograms: Procedure & Function	
		Examples, Controller Description:	
		Sequence Detector Example.	
9	W 27/3	VHDL Predefined Operators, VHDL	Ch.3 & Handout
9	VV 21/3	Lexical Elements: VHDL Design File,	Sin.5 & Hundout
		_	
		l ´	
		Delimiters & Identifiers, User Defined Identifiers, Literals: Character Literal,	

	•		
		String Literal, Bit String Literal, Abstract (Numeric) Literals, VHDL Language Grammar. VHDL Objects.	
10	S 10/3	Variables vs. Signals, Signal Assignment, Signal Transaction & Event, Delta Delay.	Ch. 4
11	M 12/3	Transport and Inertial Delay, Sequential Placement of Transactions.	Ch. 4
12	W 14/3	Sequential Placement of Transactions, Signal Attributes. Structural Specification of Hardware, A Cascadable Single-Bit Comparator.	Ch. 4 & Ch. 5
13	S 17/3	Structural model of a single-bit comparator, use of configuration statement. (Quiz#1)	Ch. 5
14	M 19/3	Netlist Description of Single-Bit Comparator, 4-Bit Comparator Structural Iterative Wiring, "For Generate" Statement, "IF Generate" Statement Structural Test Bench.	Ch. 5
15	W 21/3	Ripple Carry Adder Design using Generate Statement. Synthesis using Xilinx. Different Binding Schemes: SR Latch.	Ch. 5
16	S 24/3	Port Map Association, Default Binding, Use of Configuration Specifications, Sequential Comparator, Subprograms, Functions, Examples of Functions.	Ch. 5 & 6
17	M 26/3	Quiz#2.	
18	W 28/3	Procedure Specification, Procedure Usage, Examples of Procedures, Using Procedures in a Test Bench, Executing a Procedure.	Ch. 6
	Th 29/3	MAJOR EXAM I	
19	S 31/3	Packages, Package Declaration, Package Body, Package Examples. Design Libraries. (Solution of Major Exam I).	Ch. 6
20	M 2/4	Standard and TEXTIO Packages. Examples using TEXTIO package.	Ch. 6
21	W 4/4	Package IEEE.Std_Logic_1164.	Ch. 6
22	S 7/4	Design Parameterization, Values Passed to Generic Parameters, Configuration Declarations.	Ch. 6
23	M 9/4	Configuration Nesting, Configurations and Generics: Configuration of the N-bit Register, Selective Configuration Of Generate-Statement Instances: 8-bit Parity Checker. Data Types, Scalar Data Types, Number Formats, Enumeration Data Type.	Ch. 6 & Ch. 7
24	W 11/4	Physical Data Type, Composite Data Types: Arrays, Unconstrained Arrays,	Ch. 7

	1	T	
		Unconstrained Comparator Unconstrained	
		Comparator Test Bench Referencing Arrays	
		& Array Elements.	
25	M 16/4	Referencing Arrays & Array Elements,	Ch. 7
		Using Enumeration Types for Indexing,,	
		Records, Aliasing, Subtypes	
26	W 18/4	Type Compatibility & Conversion, Closely	Ch. 7
		Related Types, Mixed Type Arithmetic,	
		Custom Type Conversion, Type Attributes,	
		Array Attributes, Signal Attributes	
27	S 21/4	Project Discussion. (Quiz#3)	
28	M 23/4	Toggle FF Example, File Type & External	Ch. 7 & 8
		File I/O, Overloading, DATA FLOW	
		MODEL, Conditional Signal Assignment,	
		Selected Signal Assignment, Signal,	
		Assignment Examples, Multiplexing, 3-to-8	
		Decoder.	
29	W 25/4	Clocking, Block Statement, dataflow	Ch. 8
	11 23/4	architectures, for Positive-Edge-Triggered	
		DFF, Nested Block Statements, Data Flow	
		Example.	
20	0.00/4	Multi-Driver Signals: Signal Resolution	Ch. 8
30	S 28/4	Function, Resolution Function Examples:	CII. 6
		ANDING, ORING	
21	M 20/4	Resolution of Guarded and Non-Guarded	Ch. 8
31	M 30/4	Signals, Signal Kinds: BUS & Register,	Cn. o
		Examples: Different Implementations of	
		PTL Multiplexer, Disconnection Delay.	
32	W 2/5	Mealy machine example using Block	Ch. 8
32	VV 2/3	Statements, Sequence detector example,	C11. 0
		General Mealy State Machine.	
33	S 5/5	Multiplier Design: Controller Model, Data	Ch. 8 & 9
33	3 3/3	Path Model, +ive Edge-Triggered Shift	
		Register with Parallel Load. Behavioral	
		Descriptions in VHDL: Concurrent Versus	
		Sequential Statements.	
34	M7/5	Process Statement, Process Examples, Wait	Ch. 9
34	111//3	Statement, Conditional Control – IF	
		Statement, Case Statement. Loop Control,	
		FOR Loop, WHILE Loop, Next & Null	
		Statements, A Moore 1011 Detector using	
		Wait, A Moore 1011 Detector without	
		Wait, Generalized VHDL Mealy Model,	
		Generalized VHDL Moore Model, FSM	
		Example.	
35	W 9/5	NO CLASS.	
36	S 12/5	Using Wait for Two-Phase Clocking, Assert	Ch. 9
	5 12/5	Statement, Checking for Setup & Hold	
	_		

		Time, Handshaking.	
37	M14/5	Formatted I/O, VHDL Coding Styles for Synthesis, General Overview of Synthesis, VHDL Synthesis Subset, Constant Definition, Port Map Statement, When, Statement, With Statement, Case Statement, For Statement, Generate Statement, If, Statement, Variable Definition.	Ch. 9 & Handout
	T 15/5	MAJOR EXAM II	
38	W 16/5	Multiplexor Synthesis, 2x1 Multiplexor using Booleans, 2x1 Multiplexor using a Process, Decoder Synthesis, 3-to-8 Decoder, Architecture of Generic Decoder, A Common Error in Process Statements, Another Incorrect Latch Insertion, Avoiding Incorrect Latch Insertion, Eight-Level Priority Encoder.	Appendix B & Handout
39	S 19/5	Ripple Carry Adder, Tri-State Buffer Synthesis, Bi-directional Buffer Synthesis, Latch Synthesis, Flip-Flop Synthesis with Asynchronous Reset, Flip-Flop Synthesis with Synchronous Reset, 8-bit Loadable Register with Asynchronous Clear, 4-bit Shift Register, Register with Tri-State Output, Finite State Machine Synthesis, Synthesis Static Sensitivity Rule, Impact of Coding Style on Synthesis Execution Time, Synthesis Efficiency Via Vector Operations, Three-State Synthesis.	Appendix B & Handout
40	M21/5	Latch Inference & Synthesis Rules , Flip-Flop Inference & Synthesis Rules, Alternative Coding Styles for Synchronous FSMs. CPU Design & Modeling Example.	Appendix B & Chapter 10 & Handout
41	W 23/5	MAJOR EXAM II Solution.	
42	S 26/5	CPU Design & Modeling Example.	Chapter 10
43	M28/5	Register Transfer Level CPU Modeling: Datapath & Control Unit Modeling.	Chapter 10
44	W 30/5	Review.	
45	S2/6	Project Demonstrations.	