
Page 1 of 16

 May 20, 2013

COMPUTER ENGINEERING DEPARTMENT

COE 405

DESIGN & MODELING OF DIGITAL SYSTEMS

Final Exam

Second Semester (122)

Time: 7:00-10:00 PM

OPEN BOOK EXAM

Student Name : _KEY__

Student ID. : __

Question Max Points Score

Q1 28

Q2 20

Q3 36

Q4 16

Total 100

Dr. Aiman El-Maleh

Page 2 of 16

[28 Points]

 (Q1) Determine possible circuits that will be synthesize by each of the following modules:

(i) module FinalQ1_1 (output reg E, input A, B, C, D);

 always @(posedge A)

 if (B==C) E <= D;

 else E <= ~ D;

 endmodule

(ii) module FinalQ1_2 (output reg E, input A, B, C, D);

always @(A, B, C, D)

 case ({A,B})

 2'b00: E = C & D;

 2'b01: E = C | D;

 2'b10: E = C ^ D;

 endcase

endmodule

Page 3 of 16

(iii) module FinalQ1_3 (output reg E, input A, B, C, D);

always @(A, B, C, D) begin

 E = 0;

 case ({A,B})

 2'b00: E = C & D;

 2'b01: E = C | D;

 2'b10: E = C ^ D;

 endcase

end

endmodule

(iv) module FinalQ1_4 (output E, input A, B, C, D);

reg t;

always @(posedge A)

 t <= B;

assign E = D?C:1'bz;

assign E = ~D?t:1'bz;

endmodule

Page 4 of 16

(v) module FinalQ1_5 (output reg [3:0] Data_out, input DIN, clock, reset);

 always @ (posedge clock, posedge reset) begin

 if (reset) Data_out = 0;

 else begin

 Data_out[0]=DIN;

 Data_out[1]=Data_out[0];

 Data_out[2]=Data_out[1];

 Data_out[3]=Data_out[2];

 end

 end

endmodule

(vi) module FinalQ1_6 (output reg Y, input D, S, R, X);

always @(posedge X, posedge S, posedge R)

 if (R) Y <= 0;

 else if (S) Y <=1;

 else Y <= D;

endmodule

Page 5 of 16

(vii) module FinalQ1_7 (output reg Y, input D, S, R, X);

always @(posedge X) begin

 if (R) Y <= D;

 if (S) Y <=~D;

end

endmodule

Page 6 of 16

[20 Points]

 (Q2) The three n-bit registers R1, R2, and R3, are connected through a tri-state bus (Cbus)

to allow the transfer of the content of any register to any other register as shown below:

(i) Write a Verilog model Datapath to model the given datapath showing the

inetrface signals assuming R1, R2, R3 as output signals, CLK, Reset, R1in,

R2in, R3in, R1out, R2out, R3out, Dout and Data as input signals. Assume that

RST is Asynchronous reset that resets the machine when set to 1. Use parametr n

for determining the width of registers with a default value of 8.

module Datapath #(parameter n=8)

(output reg [n-1:0] R1, R2, R3,

input CLK, RST, R1in, R2in, R3in, R1out, R2out, R3out, Dout,

input [n-1:0] Data);

wire [n-1:0] Cbus;

always @ (posedge CLK, posedge RST) begin

 if (RST) begin

R1 <= 0; R2 <= 0; R3 <= 0;
 end

 else begin

 if (R1in) R1 <= Cbus;

 if (R2in) R2 <= Cbus;

 if (R3in) R3 <= Cbus;

 end

end

Page 7 of 16

assign Cbus = R1out? R1:{n{1'bz}};

assign Cbus = R2out? R2:{n{1'bz}};

assign Cbus = R3out? R3:{n{1'bz}};

assign Cbus = Dout? Data:{n{1'bz}};

endmodule

(ii) Write a test bench to do the following assuming that the period of the clock is 100

ns and that the duty cycle is 50%:

 Initialize all the registers to 0 using the RST signal at time = 200 ns.

 Assign RST and all other control signals to 0 at time 300 ns.

 Assign Data=5 and Dout=1 at time 400 ns.

 Copy the value 5 from the bus into register R1 in the next cycle.

 Move the value of R1 into R2 in the following cycle.

 All registers keep their value in the subsequent clock cycles

module t_Datapath #(parameter n=8)();

wire [n-1:0] R1, R2, R3;

reg CLK, RST, R1in, R2in, R3in, R1out, R2out, R3out, Dout;

reg [n-1:0] Data;

Datapath M1(R1, R2, R3, CLK, RST, R1in, R2in, R3in, R1out, R2out, R3out, Dout,

Data);

initial begin CLK = 0; forever #50 CLK = ~CLK; end

initial begin

#200 RST=1;

#100 RST=0; R1in=0; R2in=0; R3in=0; R1out=0; R2out=0; R3out=0;

Dout=0;

#100 begin Data='d5; Dout=1; end

@ (posedge CLK) begin R1in=1; end

@ (posedge CLK) begin Dout=0; R1out=1; R1in=0; R2in=1; end

@ (posedge CLK) begin Dout=0; R1out=0; R1in=0; R2in=0; end

end

endmodule

Page 8 of 16

[36 Points]

(Q3) It is required to design a module to perform unsigned division of an n-bit dividend

number, A, by an n-bit divisor number, B. The divider produces an n-bit quotient and an n-

bit remainder. Assume that the divider will be a sequential divider and it will set the signal

Ready to 1 when the quotient and remainder results are ready. The divider has an

Asynchronous Reset after which in the next clock cycle it starts the division process if the

Start signal is 1. The quotient and remainder willl maintain their values unless the divider is

reset again. The module of the divider is given below where A is the dividend, B is the

divider, Q is the quotient and R is the reminder:

module UDIV # (parameter n= 4)

(output [n-1:0] Q, R, output Ready,

input [n-1:0] A, B,

input Start, Reset, CLK);

DPath_DIV #(n) DPU(Q, R, CEN, DGEZ, LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC,

CLRC, CLK, A, B);

CU_DIV CU (LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC, Ready, Start, CLK,

Reset, DGEZ, CEN);

endmodule

Part of the Datapath of the divider is given below:

The algorithm for performing sequential division is as follows:

1. Set Quotient=Dividened, Set Remainder=0.

2. Shift(Remainder,Quotient) Left by 1 bit

3. Difference=Remainder-Divisor

4. If (Difference 0) Then

Remainder=Difference

Set Least Significant bit of Quotient to 1.

End If;

1. If (#iterations<N) Then Goto Step 2.

n-bit

SUB

Divisor

Remainder

Quotient

n-bit

n-bit n-bit

Shift Left Difference

Page 9 of 16

An example of applying the algorithm for a 4-bit divider with dividened=1110 and

divisor=0011 is given below. Note that the Quotient=0100 and the Remainder=0010.

The description of various signals is illustrated in the table below:

Signal Role

LDR Load the remainder register

ClearR Clear the remainder register

LDQ Load the quotient register

SetQ0 Set quotion register bit 0 to 1

LDB Load the B register with the divisor

Shift Shift the quotient and remainder register one

bit to the left

INC Increment counter

CLRC Clear counter

DGEZ Set when difference is ≥ 0

CEN Set when counter is equal to n

(i) Complete the Verilog model given below for modeling the Datapath of the

divider.

module DPath_DIV #(parameter n=4)

(output reg [n-1:0] Q, R, output CEN, DGEZ,

input LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC, CLK,

input [n-1:0] A, B);

reg [n-1:0] BR, CR;

wire [n-1:0] Diff;

always @ (posedge CLK)

begin

// Divisor Register

Page 10 of 16

 if (LDB) BR <= B;

// Quotient Register

 if (LDQ) Q <= A;

 else if (Shift) Q <= {Q[n-2:0],1'b0};

 else if (SetQ0) Q[0] <= 1'b1;

// Remainder Register

 if (LDR) R <= Diff;

 else if (Shift) R <= {R[n-2:0],Q[n-1]};

 else if (ClearR) R <= 0;

// Counter Register

 if (CLRC) CR <= 0;

 else if (INC) CR <= CR+1;

end

assign CEN = (CR==n);

assign Diff = R - BR;

assign DGEZ = ~ Diff[n-1];

endmodule

Page 11 of 16

(ii) Write an ASMD chart for the control unit of the divider.

S0

Start

LDQ, LDB,

CLRC. ClearR

S1/Shift

S2

DGEZ

LDR, SetQ0,

 INC

INC

S3 CEN S4/Ready

1

0

1

0

1

0

Ready<=1

CR<=CR+1

R<=Diff

Q[0]<=1

CR<=CR+1

R<={R[n-2:0], Q[n-1]

Q<= {Q[n-2]:1],0}

Q<=A

BR<=B

CR<=0

R<=0

Reset

Page 12 of 16

(i) Complete the Verilog model given below for modeling the Control Unit of the

divider.

module CU_DIV (output reg LDR, ClearR, LDQ, SetQ0, LDB, Shift, INC, CLRC,

Ready, input Start, CLK, Reset, DGEZ, CEN);

// State Codes

parameter s0=0, s1=1, s2=2, s3=3, s4=4;

reg [2:0] PS, NS;

always @(posedge CLK, posedge Reset)

 if (Reset==1) PS <= s0;

 else PS <= NS;

always @ (PS, Start, DGEZ, CEN) begin

LDR=0; ClearR=0; LDQ=0; SetQ0=0; LDB=0;

Shift=0; INC=0; CLRC=0; Ready=0;

NS=s0;

case (PS)

s0: if (Start) begin

 LDQ=1; LDB=1; CLRC=1; ClearR=1;

 NS = s1;

 end

 else NS = s0;

s1: begin

 Shift=1;

 NS = s2;

 end

s2: begin

 if (DGEZ) begin

 LDR=1; SetQ0=1; INC=1;

 end else INC=1;

 NS = s3;

 end

s3: begin

 if (CEN)

 NS = s4;

Page 13 of 16

 else

 NS = s1;

 end

s4: begin

 Ready=1;

 NS = s4;

 end

default: NS=s0;

endcase

end

endmodule

Page 14 of 16

[16 Points]

(Q4) It is required to model an Asynchronous FIFO (First-In-First-Out) memory queue.

The FIFO has a parametrizable memory depth of upto K loctions with a parametrizable data

width of N bits. The FIFO interface is given below:

The Reset signal is an Asynchronous reset and when set to 1 it will consider the content of

FIFO empty and set the EMPTY flag to one and all other flags to 0. A handshaking

mechanism is used for both writing and reading from the FIFO using the signal WR_EN,

WR_ACK, RD_EN and RD_ACK. When WR_EN=1, the data in DIN input will be written to

the available location in the FIFO as long as the FULL signal is not set to 1. If the FIFO is

FULL the request is ignored and not acknolwdged. It is assumed that the WR_EN signal will

remain 1 until a WR_ACK is set to 1 by the FIFO. After that, the WR_EN signal will go to 0.

A similar handshaking mechanism is used for reading from the FIFO. When RD_EN=1, the

data in the proper location will be output to DOUT as long as the EMPTY signal is not set to

1. Then, the RD_ACK signal is set to 1. If the FIFO is EMPTY the request is ignored and not

acknolwdged. It is very important to note that the FIFO should be able to read and write

simultaneously if needed.

A read pointer is used to point at the location to be read from and a write pointer is used to

point at the location to be written to. A counter is used to keep track of when the FIFO is full

or empty.

Part of the FIFO mdoule is given below and you need to complete the following missing

parts:

(i) Declare all the required variables for modeling the FIFO.

(ii) The Read and Counter processes are given to you. Describe the write process for

writing to the FIFO.

module FIFO #(parameter N=8, K=4, KS=2)

(output reg [N-1:0] DOUT,

output reg WR_ACK, RD_ACK, FULL, EMPTY,

input [N-1:0] DIN,

input Reset, WR_EN, RD_EN);

// Define required variables here

Din[N-1:0]

WR_EN

WR_ACK

FULL

Dout[N-1:0]

RD_EN

RD_ACK

EMPTY

FIFO

K x N

Reset

Page 15 of 16

reg [KS-1:0] ReadP, WriteP;

reg [KS:0] Count;

reg INC, DEC, INCA, DECA;

reg [N-1:0] FIFO[K-1:0];

// Read Process

 always @ (Reset, RD_EN, Count) begin

 if (Reset) begin

 RD_ACK = 0;

 ReadP = 0;

 EMPTY = 1;

 DEC = 0;

 end

 else begin

 if (RD_EN)

 if (Count > 0) begin

 DOUT = FIFO[ReadP];

 if (ReadP < K-1)

 ReadP = ReadP + 1;

 else

 ReadP = 0;

 RD_ACK = 1;

 DEC = 1;

 @ (posedge DECA) DEC = 0;

 @ (negedge RD_EN) RD_ACK = 0;

 end

 if (Count==0)

 EMPTY = 1;

 else

 EMPTY = 0;

 end

 end // Read Process

// Write Process

 always @ (Reset, WR_EN, Count) begin

 if (Reset) begin

 WR_ACK = 0;

 WriteP = 0;

 FULL = 0;

 INC = 0;

 end

 else begin

 if (WR_EN) begin

 if (Count < K) begin

Page 16 of 16

 FIFO[WriteP] = DIN;

 if (WriteP < K-1)

 WriteP = WriteP + 1;

 else

 WriteP = 0;

 WR_ACK = 1;

 INC = 1;

 @ (posedge INCA) INC = 0;

 @ (negedge WR_EN)WR_ACK = 0;

 end

 end

 if (Count==K)

 FULL = 1;

 else

 FULL = 0;

 end

 end // Write Process

// Counter Process

 always @ (Reset, INC, DEC) begin

 if (Reset==1) begin

 Count = 0;

 INCA = 0;

 DECA = 0;

 end

 else begin

 if (INC) begin

 Count = Count + 1;

 INCA = 1;

 @ (negedge INC) INCA = 0;

 end

 if (DEC) begin

 Count = Count - 1;

 DECA = 1;

 @ (negedge DEC) DECA = 0;

 end

 end

 end // Counter Process

endmodule

