COE 405, Term 162

Design \& Modeling of Digital Systems

Assignment\# 5 Solution

Due date: Saturday, May 13
Q.1. Consider the following function:

$$
\begin{aligned}
X= & A C+B C+A D+B D+A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} D^{\prime}+A E F+B E F+A E^{\prime} F^{\prime}+B E^{\prime} F^{\prime}+A^{\prime} B^{\prime} E F^{\prime}+ \\
& A^{\prime} B^{\prime} E^{\prime} F
\end{aligned}
$$

(i) Compute all double-cube divisors of X along with their bases and their weights. Show only double-cube divisors that have non-empty bases.
(i) Double Cube Drursors

Double-cube divisor	Base	werght
$A+B$	C, D, EF, $\overline{E F}$	$4 \times 2-1-2+6+4=12$
$C+D$	A, B	$2 \times 2-2-2+2+0=2$
$c+E F$	A, B	$2 \times 3-2-3+2=3$
$C+\bar{E} \bar{F}$	A, B	$2 \times 3-2-3+2=3$
C + CFF	A, B	$2 \times 3-2-3+2=3$
$D+E F$	A, B	$2 \times 3-2-3+2=3$
$O+E F$ $\bar{E}+\bar{O}$	$\bar{A} \bar{B}$	$1 \times 2-1-2+2+0=1$
$\bar{e}+\overline{0}$ $\bar{C}+\bar{E} \bar{F}$	$\overline{\text { A }}$	$1 \times 3-1-3+2=1$
$\bar{C}+E F$ $\bar{C}+\overline{E F}$	$\bar{A} \bar{B}$	$1 \times 3-1-3+2=1$
$\bar{C}+\overline{E F}$ $\bar{D}+E \bar{F}$	$\bar{A} \bar{B}$	$1 \times 3-1-3+2=1$
$\overline{\bar{D}+E F}$	$\bar{A} \bar{B}$	$1 \times 3-1-3+2=1$
$\bar{D}+\overline{E F}+\overline{E F}$	A, B	$3 \times 4-3-4+4=9$
$E F+\overline{E F} \bar{F}$	E	$1 \times 5-1-5+1=0$
$A F+\bar{A} \bar{B} \bar{F}$	F	$1 \times 5-1-5+1=0$
$\frac{A E}{}+\bar{A} \bar{B} \bar{E}{ }^{\text {a }}$	E	$1 \times 5-1-5+1=0$
$B F+\bar{A} \bar{B} \bar{F}$ $B E+\bar{A} \bar{B} \bar{E}$	F	$1 \times 5-1-5+1=0$
$B E+\overrightarrow{A B E}$ $A \bar{E}+\bar{A} \bar{B} E$	\bar{F}	$1 \times 5-1-5+1=0$
$A \bar{E}+\bar{A} \bar{B} E$ $A \bar{F}+\bar{A} \bar{B} F$	\bar{E}	$1 \times 5-1-5+1=0$
$\frac{A F}{B \bar{E}}+\bar{A} \bar{B} \bar{B} E$	\bar{F}	$1 \times 5-1-5+1=0$
$B \bar{F}+\bar{A} \bar{B} F$	E	$1 \times 5-1-5+1=0$
$E \bar{F}+\bar{E} F$	$\bar{A} \bar{B}$	$3 \times 4-3-4+4=9$

(ii) Apply the fast extraction algorithm based on extracting double-cube divisors along with complements or single-cube divisors with two-literals. Show all steps of the algorithm. Determine the number of literals saved. Compare your solution with the result obtained by running the sis commands $f x$.
(ii) Fast Extraction

From part (i), we can see that Wdmax $=12$ and the double cube divisor $A+B$ has the highest weight.
The highest weight single cube divisor is $\bar{A} \bar{B}$ with a weight of 2 .
Thus, the double cube divisor is selected and
the resulting network is:

$$
\begin{aligned}
{[1]=} & A+B \\
X= & C[1]+D[1]+\bar{C} \overline{[1]}+\bar{D} \overline{[1]}+E F[1] \\
& +\overline{E F}[1]+E \overline{[1]}+\overline{E F} \overline{[1]}
\end{aligned}
$$

Double cube dividers are updated in the same way and the double cube divider $E F+\bar{E} \bar{F}$ is extracted as it has the highest weight of $2 \times 4-2-4+2=4$, Thus, the resulting network will be:

$$
\begin{aligned}
{[1] } & =A+B \\
{[2] } & =E F+\bar{E} \bar{F} \\
x & =C[1]+O[1]+\bar{C} \overline{[1]}+\overline{0} \overline{[1]}+[2][1]+\overline{[2]} \overline{[1]}
\end{aligned}
$$

since none of the remaining double cube divisors or smile cube divisors has a posture weight, none of them will be extracted.

SIS has resulted in the same extracted network as shown below:
sis> read_eqn hw5q1.eqn
sis> print
$\{X\}=A C+A D+A E F+A E^{\prime} F^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} D^{\prime}+A^{\prime} B^{\prime} E F^{\prime}+A^{\prime} B$
${ }^{\prime} E^{\prime} F+B C+B D+B E F+B E^{\prime} F^{\prime}$
sis> print_stats
hw5q1.eqn $\mathrm{pi}=6$ po= 1 node= 1 latch= 0 lits($(\mathrm{sop})=34$ lits(ff)= 16
sis>fx
sis> print
$\{\mathrm{X}\}=\mathrm{C}[1]+\mathrm{C}^{\prime}[1]^{\prime}+\mathrm{D}[1]+\mathrm{D}^{\prime}[1]^{\prime}+[1][2]+[1]^{\prime}[2]^{\prime}$
$[1]=\mathrm{A}+\mathrm{B}$
$[2]=E F+E^{\prime} F^{\prime}$
sis> print_stats
hw5q1.eqn $\mathrm{pi}=6$ po $=1$ node $=3$ latch= 0 lits($(\mathrm{sop})=18$ lits(ff)= 14 sis>
Q.2. Consider the logic network defined by the following expressions:

$$
\begin{aligned}
& \mathrm{e}=\mathrm{a} \quad \mathrm{~b} \text { d } \\
& \mathrm{f}=\mathrm{c} \mathrm{~d}^{2} \\
& \mathrm{~g}=\mathrm{e}+\mathrm{f} \\
& \mathrm{~h}=\mathrm{ad} \\
& \mathrm{i}=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{d}^{\prime} \\
& \mathrm{j}=\mathrm{h}+\mathrm{i} \\
& \mathrm{k}=\mathrm{b} \text { d } \\
& \mathrm{l}=\mathrm{j}+\mathrm{k} \\
& \mathrm{x}=\mathrm{g}+\mathrm{l}
\end{aligned}
$$

Inputs are $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and output is $\{\mathrm{x}\}$. Assume that the delay of a gate is related to the number of its inputs. Also, assume that the input data-ready times are zero except for input d , which is equal to 2 .
(i) Draw the logic network graph and compute the data ready times and slacks for all vertices in the network.
(f)

The data ready tres are shown on the froure. The maximum propagation delay is R. To compute the slack for each node, the required true for x is set to 12 .

$$
\begin{aligned}
& \bar{t}_{x}=12 \quad s_{x}=12-12=0 \\
& E_{O}=12-2=10 \\
& 5 g=10-7=3 \\
& E_{R}=12-2=10 \\
& 5 e=10-10=0 \\
& E_{e}=10-2=8 \\
& S_{c}=8-5=3 \\
& \bar{t}_{f}=10-2=8 \\
& \delta f=8-4=4 \\
& E_{j}=10-2=8 \\
& 5 J=8-8=0 \\
& E_{k}=10-2=8 \\
& 5 x=8-4=4 \\
& E_{n}=8-2=6 \\
& s_{h}=6-4=2 \\
& E_{c}=8-2=6 \\
& s_{i}=6-6=0 \\
& E_{a}=\min \{8-3,6-2,6-3-1\}=2 \\
& \begin{array}{l}
S_{b}=2-0=2
\end{array} \\
& E_{b}=\min \{8-3,6-3-1,8-2\}=2 \\
& \begin{array}{l}
E_{c}=8-2=6 \\
E_{d}
\end{array}=\min \{8-3,8-2,6-2,6-3-1,8-2\}=2 \quad \text { } \quad \text { d }=2-2=0
\end{aligned}
$$

(ii) Determine the maximum propagation delay and the topological critical path.
(ii) The maximum propagation delay is 12 and the topological critical path is:

$$
\{d, i, j, l, \times\} .
$$

(iii) Suggest an implementation of the function \boldsymbol{x} to reduce the delay of the circuit. What is the maximum propagation delay after the modified implementation?

$$
\begin{aligned}
\text { (iii) } \begin{aligned}
x & =g+l=e+f+j+x \\
& =a b d+c d+a d+\bar{b} \bar{d}+b d \\
& =d[a b+c+a+b]+\bar{a} \bar{d} \\
& =d[a+b+c]+\bar{b} \bar{d}
\end{aligned} \\
\text { Thus, to improve the delay of } x \text {, we }
\end{aligned}
$$

Q.3. It is required to design a circuit to compute the equation $\mathrm{Y}=\mathrm{A}+2 * \mathrm{~B}+3 * \mathrm{C}$, where A, B, and C are N -bit inputs representing signed numbers in 2 's complement representation. Assume that inputs are available only during the first cycle when a START input is asserted. Assume that a DONE signal will be set when the result is ready and the result will remain held until the next Start operation.
(i) Show a schedule of the operations with minimum latency (ie., clock cycles) assuming that the clock cycle is limited by the time for performing one addition operation. Store the output Y in a register.

(ii) Show the Data Path design of your circuit indicating all the control signals and the used adder sizes.

(iii) Show the ASMD diagram of your control unit.

(iv) Write the necessary Verilog modules to module the data path unit, control unit and the overall circuit.

```
module HW5 #(parameter N=4) (output [N+2:0] Y, output DONE,
input [N-1:0] A, B, C, input START, RESET, CLK);
HW5_DPU #(N) M1 ( Y, A, B, C, SEL, R1IN, R2IN, CLK);
HW5_CU M2 (SEL, R1IN, R2IN, DONE, START, RESET, CLK);
endmodule
module HW5_DPU #(parameter N=4) (output [N+2:0] Y, input [N-
1:0] A, B, C, input SEL, R1IN, R2IN, CLK);
reg [N+2:0] R1;
```

```
reg [N+1:0] R2;
wire [N+2:0] MUX1;
wire [N+1:0] MUX2;
assign MUX1 = SEL? R1 : {A[N-1],A[N-1],A[N-1],A};
assign MUX2 = SEL? R2 : {B[N-1],B,1'b0};
assign Y = R1;
always @(posedge CLK) begin
if (R1IN)
    R1 = MUX1 + {MUX2[N+1],MUX2} ;
if (R2IN)
    R2 = {C[N-1],C[N-1],C} + {C[N-1],C,1'b0};
end
endmodule;
module HW5_CU (output reg SEL, R1IN, R2IN, DONE, input START,
RESET, CLK);
parameter S0 = 2'b00, S1=2'b01, S2=2'b10;
reg [1:0] state, next_state;
always @(posedge CLK, posedge RESET)
    if (RESET) state <= SO;
    else state <= next_state;
always @(state, START) begin
    SEL=0; R1IN=0; R2IN=0; DONE=0;
    case (state)
    S0:
        if (START) begin
            next state=S1; R1IN=1; R2IN=1; end
        else next state=S0;
    S1: begin SEL=1; R1IN=1; next_state=S2; end
    S2: begin DONE=1;
        if (START) begin
            next_state=S1; R1IN=1; R2IN=1; end
            else nex}t_state=S2
            end
            default: begin
            next state=1'bx;
            SEL=1'bx; R1IN=1'bx; R2IN=1'bx; DONE=1'bx;
            end
    endcase
end
endmodule
```

(v) Write a test bench to test the correct operation of your circuit. Include simulation snapshots.

```
module HW5_Test();
wire [6:0] Y;
wire DONE;
reg [3:0] A, B, C;
reg START, RESET, CLK;
HW5 #(4) M1 ( Y, DONE, A, B, C, START, RESET, CLK);
initial begin
CLK = 0;
forever
#50 CLK = ~ CLK;
end
initial begin
RESET=1;
#100 RESET=0; START=1; A=7; B=7; C=7;
#100 START=0;
#100 ;
#100 START=1; A=-8; B=-8; C=-8;
#100 START=0;
#100 ;
#100 START=1; A=3; B=-4; C=5;
#100 START=0;
end
endmodule
```


(vi) Implement your circuit on FPGA assuming $\mathrm{N}=2$ bits. Include a link for a video snapshot to demonstrate correct functionality of your circuit.

