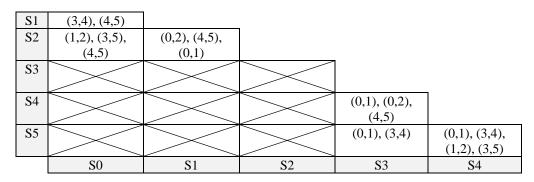
COE 405, Term 162

Design & Modeling of Digital Systems


Assignment# 2 Solution

Due date: Saturday, March 11

Q.1. Consider the given FSM that has 6 states, two inputs X and Y, and one output Z, represented by the following state table:

Present State		Next State				
	XY=00	XY=01	XY=10	XY=11	Z	
SO	S1	S 3	S 0	S 4	0	
S1	S 0	S 4	S1	S5	0	
S2	S2	S5	S 0	S5	0	
S3	S1	S 3	S 0	S 4	1	
S4	S0	S 4	S2	S5	1	
S5	S1	S 3	S 1	S 3	1	

(i) Determine the equivalent states.

Equivalent states are: (S0, S1, S2), (S3, S4, S5).

Thus, the machine can be reduced to two states: S0'=(S0, S1, S2), S1'=(S3, S4, S5).

(ii) Reduce the state table into the minimum number of states and show the reduced state table.

Present		Next State				
State	XY=00	XY=00 XY=01 XY=10 XY=11				
S0'	S0'	S1'	S0'	S1'	0	
S1'	S0'	S1'	S0'	S1'	1	

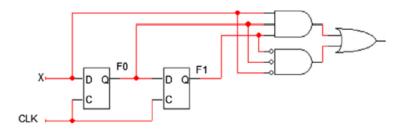
The reduced state table is:

Q.2. Consider the given FSM that has 4 states, one input (X) and one output (Z), represented by the following state table:

Present State	Next State, Z		
	X=0	X=1	
SO	S0, 1	S2, 0	
S1	S0, 0	S2, 0	
S2	S1, 0	S3, 0	
S3	S1, 0	S3, 1	

(i) Implement the FSM using the following state assignment: S0=00, S1=10, S2=01, S3=11.

	00	01	11	10
0	1 0	0 1	0 3	02
1	04	0 5	1 7	06


Z = F1'F0'X' + F1F0X

	00	01	11	10
0	0 0	1 1	13	02
1	04	1 5	1 7	06

F0+=X

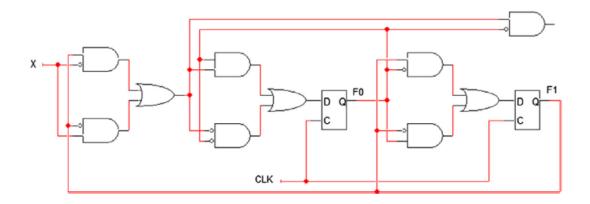
	00	01	11	10
0	0 0	0 1	13	1 2
1	04	05	1 7	1 6

Fl += F0

(ii) Implement the FSM using the following state assignment: S0=10, S1=01, S2=11, S3=00.

	00	01	11	10
0	0 0	1 1	03	0 2
1	1 4	0 5	0 7	0 8

 $Z = F1'F0'X + F1F0'X' = F0'(F1'X + F1X') = F0'(F1 \oplus X)$


	00	01	11	10
0	1 0	0 1	1 3	0 2
1	04	1 5	0 7	16

F0 + = F1' F0' X' + F1' F0 X + F1 F0' X + F1 F0 X' = F1' (F0' X' + F0 X) + F1 (F0' X + F0 X) + F1 (F0' X

 $= F1 \oplus F0 \oplus X$

	00	01	11	10
0	0 0	0 1	1 3	1 2
1	14	1 5	0 7	0 6

 $F1 + = F1'F0 + F1F0' = F1 \oplus F0$

(iii) Compare the area of the two resulting circuits.

The number of literals using the first state assignment is 6 while it is 14 using the second state assignment. We could also say that the first assignment uses an equivalent of 5 2-input primitive gates while the second state assignment uses 10 2-input primitive gates. Therefore, the first assignment produces a significantly lower area than the second assignment.

- **Q.3.** It is required to design a sequential circuit using Mealy model that computes the equation Z=3*X-3, where X is an unsigned number that will be fed serially. Assume that the circuit has an asynchronous Reset input that resets the machine to the reset state.
 - (i) Draw the state diagram for your sequential circuit. Make sure that your state machine is minimal and that it does not have any redundant state.

Present State	Next State, Y		
	X=0	X=1	
S0 (B=3)	S1, 1	S3, 0	
S1 (B=2)	S2, 0	S3, 1	
S2 (B=1)	S2, 1	S4, 0	
S3 (B=0)	S3, 0	S4, 1	
S4 (C=1)	S 3, 1	S5, 0	
S5 (C=2)	S4, 0	S 5, 1	

(ii) Derive minimized equations for the output Z and next state variables.

Since we have 6 states, we need 3 FFs: F2, F1, and F0. We will use the following encoding: S0=000, S1=001, S2=010, S3=011, S4=100, and S5=101.

Transition Table:

Present State F2F1F0	Next State, Y F2 ⁺ F1 ⁺ F0 ⁺		
	X=0	X=1	
000	001, 1	011, 0	
001	010, 0	011, 1	
010	010, 1	100, 0	
011	011, 0	100, 1	
100	011, 1	101, 0	
101	100, 0	101, 1	

	00	01	11	10
00	10	0 1	13	0 2
01	14	05	1 7	0 6
11	? 12	? 13	? 15	? 14
10	18	09	1 11	0 10

 $\mathbf{Y} = (\mathbf{F0} \oplus \mathbf{X})'$

	00	01	11	10
00	10	11	13	02
01	04	05	07	1 6
11	? 12	? 13	? 15	? 14
10	18	19	111	0 10

 $F0+ = F1' F0' + F1' X + F1 F0 X' = F1' (F0' + X) + F1 F0 X' = F1 \oplus (F0' + X)$

	00	01	11	10
00	00	11	13	12
01	1 4	05	07	16
11	? 12	? 13	? 15	? 14
10	18	09	011	0 10

F1+ = F1 X' + F2' F1' F0 + F2' F1' X + F2 F0' X'

	00	01	11	10
00	0 0	0 1	03	02
01	04	15	17	06
11	? 12	? 13	? 15	? 14
10	08	19	1 11	1 10

 $F2+=F2\ X+F2\ F0+F1\ X$

(iii) Write a Verilog model for modeling your sequential circuit.

module Y3XM3 (output reg Z, input X, Reset, CLK);

parameter S0 = 3'b000;//B=3 parameter S1 = 3'b001;//B=2 parameter S2 = 3'b010;//B=1 parameter S3 = 3'b011;//B=0 & C=0 parameter S4 = 3'b100;//C=1 parameter S5 = 3'b101;//C=2

reg [2:0] CS, NS;

always @ (posedge CLK, posedge Reset) begin if (Reset) CS <= S0;

```
else
  CS \leq NS;
end
always @ (X or CS)
begin
Z = 0;
case (CS)
S0: if (X) NS=S3; else begin Z=1; NS=S1; end
S1: if (X) begin Z=1; NS=S3; end else NS=S2;
S2: if (X) NS=S4; else begin Z=1; NS=S2; end
S3: if (X) begin Z=1; NS=S4; end else NS=S3;
S4: if (X) NS=S5; else begin Z=1; NS=S3; end
S5: if (X) begin Z=1; NS=S5; end else NS=S4;
default: begin Z='bx; NS='bx; end
endcase
end
endmodule
```

(iv) Write a Verilog test bench to test the correctness of your design for the following input values: {X=1}, {X=3}, {X=5} and {X=4}.

module Y3XM3_TB();

reg CLK, Reset, X ; wire Z ;

Y3XM3 M1 (Z, X, Reset, CLK);

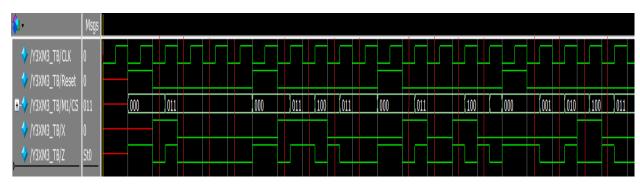
initial begin

CLK = 0 ; forever #10 CLK = ~ CLK ;

end

initial begin

//Applying X=1 @(negedge CLK) Reset=1; @(negedge CLK) Reset=0; X=1; @(negedge CLK) X=0; @(negedge CLK) X=0; @(negedge CLK) X=0;


//Applying X=3 @(negedge CLK) Reset=1; @(negedge CLK) Reset=0; X=1; @(negedge CLK) X=1; @(negedge CLK) X=0; @(negedge CLK) X=0;

//Applying X=5 @(negedge CLK) Reset=1; @(negedge CLK) Reset=0; X=1; @(negedge CLK) X=0; @(negedge CLK) X=1; @(negedge CLK) X=0;

//Applying X=4 @(negedge CLK) Reset=1; @(negedge CLK) Reset=0; X=0; @(negedge CLK) X=0; @(negedge CLK) X=1; @(negedge CLK) X=0;

end endmodule

The simulation waveform below demonstrates the correct functionality of the designed sequential circuit:

