COE 405, Term 162

Design \& Modeling of Digital Systems

Assignment\# 1 Solution

Due date: Saturday, March 4

Q.1. Consider the two functions $\mathrm{f}=(\mathrm{a} \oplus \mathrm{b})+(\mathrm{a} \oplus \mathrm{c})$ and $\mathrm{g}=\mathrm{ab}+\mathrm{a}^{\prime} \mathrm{c}+\mathrm{b}^{\prime} \mathrm{c}^{\prime}$.
(i) Implement the function f using only 2×1 MUXs and inverters minimizing the number of MUXs used.

$$
\begin{aligned}
\mathrm{f} & =\mathrm{a}^{\prime}(\mathrm{b}+\mathrm{c})+\mathrm{a}\left(\mathrm{~b}^{\prime}+\mathrm{c}^{\prime}\right) \\
& =\mathrm{a}^{\prime}\left(\mathrm{b}^{\prime}(\mathrm{c})+\mathrm{b}(1)\right)+\mathrm{a}\left(\mathrm{~b}^{\prime}(1)+\mathrm{b}\left(\mathrm{c}^{\prime}\right)\right)
\end{aligned}
$$

(ii) Compute the function $\mathrm{f} \oplus \mathrm{g}$ based on orthonormal basis expansion.

$$
\begin{aligned}
f & =a^{\prime} b^{\prime}(c)+a^{\prime} b(1)+a b^{\prime}(1)+a b\left(c^{\prime}\right) \\
g & =a^{\prime}\left(b^{\prime}+c\right)+a\left(b+c^{\prime}\right) \\
& =a^{\prime}\left(b^{\prime}(1)+b(c)\right)+a\left(b^{\prime}\left(c^{\prime}\right)+b(1)\right) \\
& =a^{\prime} b^{\prime}(1)+a^{\prime} b(c)+a b^{\prime}\left(c^{\prime}\right)+a b(1)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f} \oplus \mathrm{~g} & =\mathrm{a}^{\prime} \mathrm{b}^{\prime}(\mathrm{c} \oplus 1)+\mathrm{a}^{\prime} \mathrm{b}(1 \oplus \mathrm{c})+\mathrm{a} \mathrm{~b}^{\prime}\left(1 \oplus \mathrm{c}^{\prime}\right)+\mathrm{ab}\left(\mathrm{c}^{\prime} \oplus 1\right) \\
& =\mathrm{a}^{\prime} \mathrm{b}^{\prime}\left(\mathrm{c}^{\prime}\right)+\mathrm{a}^{\prime} \mathrm{b}\left(\mathrm{c}^{\prime}\right)+\mathrm{a} \mathrm{~b}^{\prime}(\mathrm{c})+\mathrm{ab}(\mathrm{c}) \\
& =\mathrm{a}^{\prime} \mathrm{c}^{\prime}+\mathrm{a} \mathrm{c}
\end{aligned}
$$

Q.2. It is required to design an iterative combinational circuit that computes the equation $\mathrm{Z}=3^{*} \mathrm{X}-3$, where X is an n -bit unsigned number.
(i) Determine the number of inputs and outputs needed for your 1-bit cell. Explain the meaning of values in the interface signals.

This circuit can be designed by assuming that we have a borrow of 3 feeding the first cell or by representing -3 as $-1+-1+-1$ where -1 is represented in 2 's complement as $11 \ldots 111$ and thus adding 3 to each cell. I will follow the second approach. We need to represent carry-out values in the range 0 to 5 . Thus, we need three signals to represent Carry out values propagation across cells.

(ii) Derive the truth table of your 1-bit cell.

$\mathrm{C}_{1}{ }_{\mathrm{i}-2}$	$\mathrm{C}_{\mathrm{i}-1}$	$\mathrm{C} 0_{\mathrm{i}-1}$	X_{i}	$\mathrm{C} 2_{\mathrm{i}}$	$\mathrm{C} 1_{\mathrm{i}}$	$\mathrm{C} 0_{\mathrm{i}}$	Z_{i}
0	0	0	0	0	0	1	1
0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	1
1	0	0	0	0	1	1	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	1	1
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

(iii) Derive minimized equations for your 1-bit using K-Map method.

	00	01	11	10
00	10	01	13	02
01	14	05	17	06
11	? 12	$? 13$? 15	? 14
10	18	09	111	010

$\mathrm{Zi}=\mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi}^{\prime}+\mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi}=(\mathrm{C} 0 \mathrm{i}-1 \oplus \mathrm{Xi})^{\prime}$

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$\mathbf{1}$	0	1	1
$\mathbf{1} 3$	0	02		
$\mathbf{0 1}$	04	0	5	07
$\mathbf{1 1}$	$? 12$	$? 13$	$? 15$	$? 14$
$\mathbf{1 0}$	$\mathbf{1}$	8	$\mathbf{1}$	$\mathbf{1 1 1}$
	010			

$$
\begin{aligned}
\mathrm{C} 0 \mathrm{i} & =\mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{C} 0 \mathrm{i}-1^{\prime}+\mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{Xi}+\mathrm{C} 1 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi}^{\prime} \\
& =\mathrm{C} 1 \mathrm{i}-1^{\prime}\left(\mathrm{C} 0 \mathrm{i}-1^{\prime}+\mathrm{Xi}\right)+\mathrm{C} 1 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi}^{\prime} \\
& =\mathrm{C} 1 \mathrm{i}-1 \oplus\left(\mathrm{C} 0 \mathrm{i}-1^{\prime}+\mathrm{Xi}\right)
\end{aligned}
$$

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	0	0	1	1
$\mathbf{1}_{3}$	1	1		
$\mathbf{0 1}$	1	4	0	5
0	7	1		
$\mathbf{1 1}$	$? 12$	$? 13$	$? 15$	$? 14$
$\mathbf{1 0}$	$\mathbf{1}$	8	0	0_{1}

$$
\begin{aligned}
\mathrm{C} 1 \mathrm{i} & =\mathrm{C} 1 \mathrm{i}-1 \mathrm{Xi} i^{\prime}+\mathrm{C} 2 \mathrm{i}-1^{\prime} \mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{Xi}+\mathrm{C} 2 \mathrm{i}-1^{\prime} \mathrm{C} 0 \mathrm{i}-1 \mathrm{Xi}+\mathrm{C} 2 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1^{\prime} \mathrm{Xi} i^{\prime} \\
& =\mathrm{C} 1 \mathrm{i}-1 \mathrm{Xi}^{\prime}+\mathrm{C} 2 \mathrm{i}-1^{\prime} \mathrm{C} 1 \mathrm{i}-1^{\prime} \mathrm{Xi}+\mathrm{Xi}^{\prime}(\mathrm{C} 2 \mathrm{i}-1 \oplus \mathrm{C} 0 \mathrm{i}-1)
\end{aligned}
$$

	00	01	11	10
00	00	01	03	02
01	04	15	1	0
11	? 12	?	?	? 14
10	08	19	1	11

$\mathrm{C} 2 \mathrm{i}=\mathrm{C} 1 \mathrm{i}-1 \mathrm{Xi}+\mathrm{C} 2 \mathrm{i}-1 \mathrm{Xi}+\mathrm{C} 2 \mathrm{i}-1 \mathrm{C} 0 \mathrm{i}-1$
(iv) Write a Verilog model for modeling your 1-bit cell by using an assign statement for each output.
module OneCell (output C2i, C1i, C0i, Zi , input $\mathrm{C} 2 \mathrm{i}_{-} 1, \mathrm{C} 1 \mathrm{i}_{-} 1, \mathrm{C} 0 \mathrm{i}_{-} 1, \mathrm{Xi}$);
$\operatorname{assign} \mathrm{Zi}=\mathrm{CO} \mathrm{i}_{1} 1 \sim^{\wedge} \mathrm{Xi}$;
assign COi $=\mathrm{C} 1 \mathrm{i} _1^{\wedge}\left(\sim \mathrm{CO} \mathrm{i} _1 \mid \mathrm{Xi}\right)$;
assign $\mathrm{C} 1 \mathrm{i}=\mathrm{C} 1 \mathrm{i}_{1} 1 \& \sim \mathrm{Xi}\left|\sim \mathrm{C} 2 \mathrm{i} _1 \& \sim \mathrm{C} 1 \mathrm{i} _1 \& \mathrm{Xi}\right| \sim \mathrm{Xi} \&\left(\mathrm{C} 2 \mathrm{i} _1 \wedge\right.$ C0i_1);
$\operatorname{assign} \mathrm{C} 2 \mathrm{i}=\mathrm{C} 1 \mathrm{i}_{1} 1 \& \mathrm{Xi}\left|\mathrm{C} 2 \mathrm{i}_{-1} \& \mathrm{Xi}\right| \mathrm{C} 2 \mathrm{i}_{-} 1 \& \mathrm{C} 0 \mathrm{i}_{-} 1 ;$
endmodule
(v) Write a Verilog model for modeling a 4-bit circuit based on the 1-bit model you have.
module D3XM3 (output C2, C1, C0, output [3:0] Z, input [3:0] X);

OneCell M1 (C2_0, C1_0, C0_0, Z[0],0, 0, 0, X[0]);
OneCell M2 (C2_1, C1_1, C0_1, Z[1],C2_0, C1_0, C0_0, X[1]);
OneCell M3 (C2_2, C1_2, C0_2, Z[2],C2_1, C1_1, C0_1, X[2]);
OneCell M4 (C2, C1, C0, Z[3],C2_2, C1_2, C0_2, X[3]);
endmodule
(vi) Write a Verilog test bench to test the correctness of your design for the following input values: $\{X=1\},\{X=3\},\{X=5\}$ and $\{X=4\}$.
module D3XM3_Test();
reg [3:0] X;
wire $\mathrm{C} 2, \mathrm{C} 1, \mathrm{C} 0$;
wire [3:0] Z;
D3XM3 M1 (C2, C1, C0, Z, X);
initial begin
$X=4$ 'b0001;
\#100 X=4'b0011;
\#100 X=4'b0101;
\#100 X=4'b0100;
end
endmodule

The generated simulation waveform verifies the correct functionality of the designed circuit:

