COE 405, Term 181

Design \& Modeling of Digital Systems

Assignment\# 1

Due date: Thursday, Sep. 27
Q.1. It is required to design an iterative combinational circuit that computes the equation $\mathrm{Z}=2 * \mathrm{X}-1$, where X is an n -bit unsigned number.
(i) Determine the number of inputs and outputs needed for your 1-bit cell. Explain the meaning of values in the interface signals.
(ii) Derive the truth table of your 1-bit cell.
(iii) Derive minimized equations for your 1-bit using K-Map method.
(iv) Write a Verilog model for modeling your 1-bit cell by using an assign statement for each output.
(v) Write a Verilog model for modeling a 4-bit circuit based on the 1-bit model you have.
(vi) Write a Verilog test bench to test the correctness of your design for the following input values: $\{X=1\},\{X=-1\},\{X=3\}$ and $\{X=-3\}$.

This assignment can be solved based on a group of two students. The solution should be well organized. Submit a soft copy of your solution in a zip file including your Verilog models. Your solution should be submitted in a PDF file that contains the following items:
i. Your name and ID
ii. Assignment number
iii. Problem statement
iv. Your solution
v. Include snapshots of simulation output to illustrate the correctness of your models.

