COE 405, Term 162

Design \& Modeling of Digital Systems

Assignment\# 1

Due date: Saturday, March 4

Q.1. Consider the two functions $\mathrm{f}=(\mathrm{a} \oplus \mathrm{b})+(\mathrm{a} \oplus \mathrm{c})$ and $\mathrm{g}=\mathrm{ab}+\mathrm{a}^{\prime} \mathrm{c}+\mathrm{b}^{\prime} \mathrm{c}^{\prime}$.
(i) Implement the function f using only 2 x 1 MUXs and inverters minimizing the number of MUXs used.
(ii) Compute the function $\mathrm{f} \oplus \mathrm{g}$ based on orthonormal basis expansion.
Q.2. It is required to design an iterative combinational circuit that computes the equation $\mathrm{Z}=3^{*} \mathrm{X}-3$, where X is an n -bit unsigned number.
(i) Determine the number of inputs and outputs needed for your 1-bit cell. Explain the meaning of values in the interface signals.
(ii) Derive the truth table of your 1-bit cell.
(iii) Derive minimized equations for your 1-bit using K-Map method.
(iv) Write a Verilog model for modeling your 1-bit cell by using an assign statement for each output.
(v) Write a Verilog model for modeling a 4-bit circuit based on the 1-bit model you have.
(vi) Write a Verilog test bench to test the correctness of your design for the following input values: $\{X=1\},\{X=3\},\{X=5\}$ and $\{X=4\}$.

This assignment can be solved based on a group of two students. The solution should be well organized. Submit a soft copy of your solution in a zip file including your Verilog models. Your solution should be submitted in a PDF file that contains the following items:
i. Your name and ID
ii. Assignment number
iii. Problem statement
iv. Your solution
v. Include snapshots of simulation output to illustrate the correctness of your models.

