
CHAPTER 6 

FSMD 

6.1 INTRODUCTION 

An FSMD (finite state machine with data path) combines an FSM and regular sequential 
circuits. The FSM, which is sometimes known as a control path, examines the external 
commands and status and generates control signals to specify operation of the regular 
sequential circuits, which are known collectively as a data path. The FSMD is used to 
implement systems described by RT(register transfer) methodology, in which the operations 
are specified as data manipulation and transfer among a collection of registers. 

6.1.1 Single RT operation 

An RT operation specifies data manipulation and transfer for a single destination register. 
It is represented by the notation 

rdest + f(rsrcl, rsrc2, . . . , rsrcn) 

where rdest is the destination register, rsrCl, rSrc2, and r,,,, are the source registers, and f (  .) 
specifies the operation to be performed. The notation indicates that the contents of the source 
registers are fed to the f ( . )  function, which is realized by a combinational circuit, and the 
result is passed to the input of the destination register and stored in the destination register 
at the next rising edge of the clock. Following are several representative RT operations: 

0 ri + 0. A constant 0 is stored in the rl register. 
0 rl +- ri. The content of the rl  register is written back to itself. 
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Figure 6.1 Block and timing diagrams of an RT operation. 

0 r2 +- r2 >> 3. The r2 register is shifted right three positions and then written back 

0 r2 c rl.  The content of the r l  register is transferred to the r2 register. 
0 i c i + 1. The content of the i register is incremented by 1 and the result is written 

0 d c sl + s2 + s3. The summation of the sl, s2, and s3 registers is written to the d 

0 y + a*a. The a squared is written to the y register. 

to itself. 

back to itself. 

register. 

A single RT operation can be implemented by constructing a combinational circuit for 
the f (.) function and connecting the input and output of the registers. For example, consider 
the a + a-b+l operation. The f ( . )  function involves a subtractor and an incrementor. The 
block diagram is shown in Figure 6.l(a). For clarity, we use the -reg and n e x t  suffixes to 
represent the input and output of a register. Note that an RT operation is synchronized by an 
embedded clock. The result from the f (.) function is not stored to the destination register 
until the next rising edge of the clock. The timing diagram of the previous RT operation is 
shown in Figure 6.l(b). 

6.1.2 ASMD chart 

A circuit based on the RT methodology specifies which RT operations should be executed 
in each step. Since an RT operation is done in a clock-by-clock basis, its timing is similar 
to a state transition of an FSM. Thus, an FSM is a natural choice to specify the sequencing 
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Figure 6.2 Realization of an ASMD segment. 

of an RT algorithm. We extend the ASM chart to incorporate RT operations and call it 
an ASMD (ASM with data path) chart. The RT operations are treated as another type of 
activity and can be placed where the output signals are used. 

A segment of an ASMD chart is shown in Figure 6.2(a). It contains one destination 
register, r l ,  which is initialized with 8, added with content of the r 2  register, and then 
shifted left two positions. Note that the rl register must be specified in each state. When 
r l  is not changed, the rl  +- r l  operation should be used to maintain its current content, as 
in the s3 state. In future discussion, we assume that r t r is the default RT operation for the 
r register and do not include it in the ASMD chart. Implementing the RT operations of an 
ASMD chart involves a multiplexing circuit to route the desired next value to the destination 
register. For example, the previous segment can be implemented by a 4-to-1 multiplexer, as 
shown in Figure 6.2(b). The current state (i.e., the output of the state register) of the FSM 
controls the selection signal of the multiplexer and thus chooses the result of the desired 
RT operation. 

An RT operation can also be specified in a conditional output box, as the r 2  register shown 
in Figure 6.3(a). Depending on the a>b condition, the FSMD performs either r 2  +- r2+a  or 
r 2  +- r2+b. Note that all operations are done in parallel inside an ASMD block. We need 
to realize the a>b, r2+a, and r2+b operations and use a multiplexer to route the desired 
value to r2 .  The block diagram is shown in Figure 6.3(b). 

6.1.3 Decision box with a register 

The appearance of an ASMD chart is similar to that of a normal flowchart. The main 
difference is that the RT operation in an ASMD chart is controlled by an embedded clock 
signal and the destination register is updated when the FSMD exits the current ASMD block, 
but not within the block. The r + r-1 operation actually means that: 

0 r n e x t  <= r - reg - I ;  
0 r - reg <= r n e x t  at the rising edge of the clock (i.e., when the FSMD exits the 

current block). 
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Figure 6.3 Realization of an RT operation in a conditional output box. 
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Figure 6.4 ASM block affected by a delayed store. 

This “delayed store” may introduce subtle errors when a register is used in a decision box. 
Consider the FSMD segment in Figure 6.4(a). The r register is decremented in the state 
box and used in the decision box. Since the r register is not updated until the FSMD exits 
the block, the old content of r is used for comparison in the decision box. If the new value 
of r is desired, we should use the output of the combinational logic (i.e., r n e x t )  in the 
decision box (i.e., replace the r = O  expression with rnext=O), as shown in Figure 6.4(b). 
Note that we use the : = notation, as in r n e x t  : =r-i, to indicate the immediate assignment 
of r n e x t .  

Block diagram of an FSMD The conceptual block diagram of an FSMD is divided 
into a data path and a control path, as shown in Figure 6.5. The data path performs the 
required RT operations. It consists of 

0 Data registers: store the intermediate computation results 
0 Functional units: perform the functions specified by the RT operations 

Routing network: routes data between the storage registers and the functional units 
The data path follows the cont ro l  signal to perform the desiredRT operations and generates 
the i n t e r n a l  s t a t u s  signal. 

The control path is an FSM. As a regular FSM, it contains a state register, next-state 
logic, and output logic. It uses the external command signal and the data path’s s t a t u s  
signal as the input and generates the cont ro l  signal to control the data path operation. 
The FSM also generates the ex te rna l  s t a t u s  signal to indicate the status of the FSMD 
operation. 

Note that although an FSMD consists of two types of sequential circuits, both circuits 
are controlled by the same clock, and thus the FSMD is still a synchronous system. 

6.2 CODE DEVELOPMENT OF AN FSMD 

We use an improved debouncing circuit to demonstrate derivation of the FSMD code. 
Although the debouncing circuit in Section 5.3.2 uses an FSM and a timer (which is a 
regular sequential circuit), it is not based on the RT methodology because the two units are 
running independently and the FSM has no control over the timer. Since the 10-ms enable 
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Figure 6.5 Block diagram of an FSMD. 

tick can be asserted at any time, the FSM does not know how much time has elapsed when 
the first tick is detected in the w a i t i - 1  or w a i t 0 - I  state. Thus, the waiting period in this 
design is between 20 and 30 ms but is not an exact interval. This deficiency can be overcome 
by applying the RT methodology. In this section, we use this improved debouncing circuit 
to illustrate the FSMD code development. 

6.2.1 

With the RT methodology, we can use an FSM to control the initiation of the timer to obtain 
the exact interval. The ASMD chart is shown in Figure 6.6. The circuit is expanded to 
include two output signals: db-level ,  which is the debounced output, and db-tick,  which 
is a one-clock-cycle enable pulse asserted at the zero-to-one transition. The z e r o  and one 
states mean that the s w  input has been stabilized for '0' and ' l ' ,  respectively. The w a i t l  
and w a i t 0  states are used to filter out short glitches. The s w  signal must be stable for a 
certain amount of time or the transition will be treated as a glitch. The data path contains 
one register, q, which is 21 bits wide. Assume that the FSMD is originally in the z e r o  state. 
When the s w  input signal becomes ' 1 ', the FSMD moves to the w a i t  I state and initializes 
q to "1 . . . 1". In the w a i t l  state, the q decrements in each clock cycle. If s w  remains 
as ' 1 ', the FSMD returns to this state repeatedly until q reaches "0 . . . 0 "  and then moves to 
the one state. 

Debouncing circuit based on RT methodology 
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Figure 6.6 ASMD chart of a debouncing circuit. 



134 FSMD 

Recall that the 50-MHz (i.e., 20-11s period) system clock is used on the prototyping 
board. Since the FSMD stays in the waitl  state for 2’l clock cycles, it is about 40 ms 
(i.e., 221*20 ns). We can modify the initial value of the q register to obtain the desired wait 
interval. 

There are two ways to derive the HDL code, one with explicit description of the data 
path components and the other with implicit description of the data path components. 

6.2.2 Code with explicit data path components 

The first approach to FSMD code development is to separate the control FSM and the 
key data path components. From an ASMD chart, we first identify the key components 
in the data path and the associated control signals and then describe these components in 
individual code segments. 

The key data path component of the debouncing circuit ASMD chart is a custom 21-bit 
decrement counter that can: 

0 Be initialized with a specific value 
Count downward or pause 
Assert a status signal when the counter reaches 0 

We can create a binary counter with a q-load signal to load the initial value and a q-dec 
signal to enable the counting. The counter also generates a q-zero status signal, which 
is asserted when the counter reaches zero. The complete data path is composed of the q 
register and the next-state logic of the custom decrement counter. A comparison circuit is 
included to generate the q-zero status signal. The control path consists of an FSM, which 
takes the s w  input and the q-zero status and asserts the control signals, q-load and q-dec, 
according to the desired action in the ASMD chart. The HDL code follows the data path 
specification and the ASMD chart, and is shown in Listing 6.1. 

Listing 6.1 Debouncing circuit with an explicit data path component 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  debounce i s  

s p o r t (  
c l k ,  reset: in std-logic; 
s w :  in std-logic; 
db-level , db-tick: out  std-logic 

) ;  
mend debounce ; 

a r c h i t e c t u r e  exp-fsmd-arch of debounce i s  
c o n s t a n t  N: integer:=21; -- f i l t e r  of 2 ^ N  * 2 0 n s  = 40ms 
type state-type i s  (zero, wait0, one, waitl); 

s i g n a l  q-reg , q-next : unsigned(N-1 downto 0)  ; 
s i g n a l  q-load , q-dec , q-zero : std-logic ; 

-- FSMD s t a t e  C? d a t a  r e g i s t e r s  

begin  

IS  s i g n a l  state-reg , state-next : state-type; 

begin  

zo p r o c e s s  (clk ,reset) 

if reset=’l’ then 
state-reg <= zero; 
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q - r e g  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
q - r e g  <= q - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  

30 

-- FSMD d a t a  p a t h  ( c o u n t e r )  n e x t - s t a t e  l o g i c  
q - n e x t  <= ( o t h e r s = >  ’ 1 ’ )  when q - l o a d =  1 ’ e l s e  

q - r e g  - 1 when q - d e c = ’ l J  e l s e  
q - r e g  ; 

35 q - z e r o  <= ’ 1 ’  when q - n e x t = o  e l s e  j 0 ’ ;  

-- FSMD c o n t r o l  p a t h  n e x t - s t a t e  l o g i c  
p r o c e s s  ( s t a t e - r e g  , s w , q - z e r o )  
beg in  

40 q - l o a d  <= ’ 0 ’ ;  
q - d e c  <= ’ 0 ’ ;  
d b - t i c k  <= ’ 0 ’ ;  
s t a t e - n e x t  <= s t a t e - r e g ;  
case  s t a t e - r e g  i s  

55 

i 0  

5 

when z e r o  => 
d b - l e v e l  <= > O J ;  
i f  ( s w = ’ l  ’ )  then 

s t a t e - n e x t  <= w a i t l ;  
q - l o a d  <= ’ 1 ’ ;  

end i f  ; 
when w a i t l = >  

d b - l e v e l  <= ’ 0 ’ ;  
i f  ( s w = ’ l ’ )  then 

q - d e c  <= ’ 1 ’ ;  
i f  ( q - z e r o = ’ l ’ )  then 

s t a t e - n e x t  (= o n e ;  
d b - t i c k  <= ’1’; 

end i f  ; 

s t a t e - n e x t  <= z e r o ;  
e l s e  -- s w = ’ O ’  

end i f  ; 

d b - l e v e l  <= ’ 1 ’ ;  
i f  ( s w = ’ O J )  then 

when one  = >  

s t a t e - n e x t  <= w a i t 0 ;  
q - l o a d  <= ’1’; 

end i f ;  
when w a i t O = >  

d b - l e v e l  <= ’ 1 ’ ;  
i f  ( s w = ’ O ’ )  then 

q - d e c  <= ’ 1 ’ ;  
i f  (q-zero=’l’) then 

end i f ;  

s t a t e - n e x t  <= o n e ;  

s t a t e - n e x t  <= z e r o ;  

e l s e  -- sw= ’ 1  ’ 
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end i f  ; 
end c a s e ;  

end p r o c e s s ;  
80 end e x p - f  s m d - a r c h  ; 

6.2.3 Code with implicit data path components 

An alternative coding style is to embed the RT operations within the FSM control path. 
Instead of explicitly defining the data path components, we just list RT operations with the 
corresponding FSM state. The code of the debouncing circuit is shown in Listing 6.2. 

15 

21 

30 

35 

Listing 6.2 Debouncing circuit with an implicit data path component 

a r c h i t e c t u r e  imp-f s m d - a r c h  of  d e b o u n c e  i s  
c o n s t a n t  N: i n t e g e r : = 2 1 ;  -- f i l t e r  o f  2 ^ N  * 2 0 n s  = 4 0 m s  
type  s t a t e - t y p e  i s  ( z e r o ,  w a i t 0 ,  o n e ,  w a i t l ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  

s s i g n a l  q - r e g ,  q - n e x t :  u n s i g n e d ( N - 1  downto 0 ) ;  
begin  

-- FSMD s t a t e  C? d a t a  r e g i s t e r s  
p r o c e s s  ( c l k ,  r e s e t )  
beg in  

10 i f  r e s e t  = 1 ’ then 
s t a t e - r e g  <= z e r o ;  
q - r e g  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
q - r e g  <= q - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  
p r o c e s s  ( s t a t e - r e g  , q - r e g  , s w  , q - n e x t )  

20 beg in  
s t a t e - n e x t  <= s t a t e - r e g ;  
q - n e x t  <= q - r e g ;  
d b - t i c k  <= ’ 0 ’  ; 
c a s e  s t a t e - r e g  i s  

when z e r o  = >  
d b - l e v e l  <= ’ 0 ’ ;  
i f  ( s w = ’ l ’ )  then 

s t a t e - n e x t  <= w a i t l ;  
q - n e x t  <= ( o t h e r s = > ’ l ’ ) ;  

end i f ;  
when w a i t l = >  

d b - l e v e l  <= ’ 0 ’ ;  
i f  ( s w = ’ l ’ )  then 

q - n e x t  <= q - r e g  - 1;  
i f  ( q - n e x t = O )  then 

s t a t e - n e x t  <= o n e ;  
d b - t i c k  <= ’ 1 ’ ;  

end i f  ; 

s t a t e - n e x t  <= z e r o ;  
e l s e  -- s w = ’ O ’  
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55 

end i f  ; 

db-level <= ’1 ’ ; 
i f  (sw=’O’) then 

when one => 

state-next <= wait0; 
q-next <= ( o t h e r s = > ’ l ’ ) ;  

end i f ;  
when waitO=> 

db-level <= ’ 1 ’ ; 
i f  (sw=’O’) then 

q-next <= q-reg - 1; 
i f  (q-next=O) then 

end i f ;  

state-next <= one; 

state-next <= zero; 

e l s e  -- s w = ’ l ’  

end i f  ; 
end c a s e ;  

end p r o c e s s ;  
60 end imp-f smd-arch ; 

The code consists of a memory segment and a combinational logic segment. The former 
contains the state register of the FSM and the data register of the data path. The latter 
basically specifies the next-state logic of the control path FSM. Instead of generating control 
signals, the next data register values are specified in individual states. The next-state logic of 
the data path, which consists of functional units and routing network, is created accordingly. 

6.2.4 Comparison 

Code with implicit data path components essentially follows the ASMD chart. We just 
convert the chart to an HDL description. Although this approach is simpler and more 
descriptive, we rely on synthesis software for data path construction and have less control. 
This can best be explained by an example. Consider the ASMD segment in Figure 6.7. The 
implicit description becomes 

c a s e  
when sl 

dl-next <= a * b ;  
. . .  

when s 2  
d2-next <= b * c ;  
. . .  

when s3 
d3-next <= a * c ;  
. . .  

end c a s e ;  

The synthesis software may infer three multipliers. Since a combinational multiplier is a 
complex circuit, it is more efficient to share the circuit. We can use explicit description to 
isolate the multiplier: 

case  
when sl 
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Figure 6.7 ASMD segment with sharing opportunity. 

in1 <= a; 
in2 <= b ;  
dl-next <= m-out; 

when s 2  
in1 <= b ;  
i n 2  <= c ;  
d2-next <= m-out; 

when s3 
in1 <= a ;  
in2 <= c ;  
d3-next <= m-out; 

end c a s e ;  
__ e x p l i c i t  d e s c r i p t i o n  of a s i n g l e  m u l t i p l i e r  
m-out <= in1 * in2; 

The code ensures that only one multiplier is inferred during synthesis. The implicit and 
explicit descriptions can be mixed for a complex FSMD design. We frequently isolate and 
extract complex data path components for code clarity and efficiency. 

6.2.5 Testing circuit 

The debouncing testing circuit discussed in Section 5.3.3 can be used to verify operation of 
the new design. Since the revised debouncing circuit's outputs include a one-clock-cycle 
tick signal, no edge detector is needed after the debouncing circuit. The revised block 
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Figure 6.8 Debouncing testing circuit. 

diagram is shown in Figure 6.8, and the corresponding code is shown in Listing 6.3. 

Listing 6.3 

l i b r a r y  ieee; 
use  ieee, std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  debounce-test i s  

Verification circuit for a debouncing circuit 

5 p o r t (  
clk: i n  std-logic; 
btn: i n  std-logic-vector (3 downto 0)  ; 
an: o u t  std-logic-vector ( 3  downto 0) ; 
sseg: out  std-logic-vector (7 downto 0)  

lo ) ;  
end debounce-test ; 

sw db-tick 

> clk - debouncing 

30 

 en q disp-mux-hex 

> counter reset 

a r c h i t e c t u r e  arch of  debounce-test i s  
s i g n a l  ql-reg , ql-next : unsigned ( 7  downto 0) ; 

I S  s i g n a l  qO-reg, q0-next : unsigned ( 7  downto 0)  ; 
s i g n a l  b-count , d-count : std-logic-vector (7 downto 0 )  ; 
s i g n a l  btn-reg : std-logic; 
s i g n a l  db-tick , btn-tick , clr : std-logic; 

b e g i n  
20 -- i n s t a n t i a t e  d e b o u n c i n g  c i r c u i t  

db-unit : e n t i t y  work. debounce (f smd-arch) 
p o r t  map( 

clk=>clk, reset=>'O', sw=>btn(l) , 
db-level=> o p e n ,  db-tick=>db-tick 

1 ;  
_- i n s t a n t i a t e  h e x  d i s p l a y  t i m e  - m u 1  t i p l x i n g  c i r c u i t  
disp-unit : e n t i t y  work. disp-hex-mux 

p o r t  map( 
clk=>clk , reset=> ' 0 '  , 
hex3=>b_count (7 downto 4), hex2=>b_count (3 downto 0 1 ,  
hexl=>d-count ( 7  downto 41, hexO=>d-count ( 3  downto 0 1 ,  
dp-in=>"lOll", an=>an, sseg=>sseg 

) ;  

-- e d g e  d e t e c t i o n  c i r c u i t  f o r  u n - d e b o u n c e d  i n p u t  
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____________________----------------------------- -- ____________________--_--------------------- 
p r o c e s s  (clk) 
beg in  

40 i f  (clk event and clk= ’ 1 ’ ) then 
btn-reg <= btn(1); 

end i f  ; 
end p r o c e s s ;  
btn-tick <= (not  btn-reg) and btn(1); 

45 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-_ t w o  c o u n t e r s  

clr <= btn(0); 

beg in  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

j n  p r o c e s s  (clk) 

i f  (clk ’ event and clk= ’ 1 ’ ) then 
ql-reg <= ql-next; 
q0-reg <= q0-next; 

55 end i f  ; 
end p r o c e s s ;  
__ n e x t - s t a t e  logic f o r  t h e  c o u n t e r  
ql-next <= ( o t h e r s = > ’ O ’ )  when clr=’l’ e l s e  

ql-reg f 1 when btn-tick=’l’ e l s e  
60 ql-reg ; 

q0-next <= ( o t h e r s = > ’ O ’ )  when clr=’i’ e l s e  
q0-reg + 1 when db-tick=’l’ e l s e  
qO-reg; 

-_ c o u n t e r  o u t p u t  
65 b-count <= std-logic-vector(ql-reg); 

d-count <= s t d - l o g i c - v e c t o r ( q 0 - r e g ) ;  
end arch; 

6.3 DESIGN EXAMPLES 

6.3.1 Fibonacci number circuit 

The Fibonacci numbers constitute a sequence defined as 

i f i = O  
i f i  = 1 
if i > 1 f i b ( i  - 1) + f i b ( i  - 2) 

One way to calculate f i b ( i )  is to construct the function iteratively, from 0 to the desired i. 
This approach requires two temporary registers to store the two most recently calculated 
values (i.e., f i b ( i  - 1) and f i b ( i  - 2)) and one index register to keep track of the number 
of iterations. The ASMD chart is shown in Figure 6.9, in which t l  and t O  are temporary 
storage registers and n is the index register. In addition to the regular data input and output 
signals, i and f ,  we include a command signal, s tart ,  which signals the beginning of 
operation, and two status signals: ready, which indicates that the circuit is idle and ready 
to take new input, and done-tick,  which is asserted for one clock cycle when the operation 
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ready <='I '  

-F 

............................................................. 

Figure 6.9 ASMD chart of a Fibonacci circuit. 
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is completed. Since this circuit, like many other FSMD designs, is probably a part of a 
larger system, these signals are needed to interface with other subsystems. 

The ASMD chart has three states. The i d l e  state indicates that the circuit is currently 
idle. When s ta r t  is asserted, the FSMD moves to the op state and loads initial values to 
three registers. The t O  and t l  registers are loaded with 0 and 1, which represent f i b ( 0 )  
and f i b (  l), respectively. The n register is loaded with i, the desired number of iterations. 

The main computation is iterated through the op state by three RT operations: 
0 t i t t i  + t o  
0 t o +  ti  
0 n t n  - 1 

The first two RT operations obtain a new value and store the two most recently calculated 
values in t i  and t o .  The third RT operation decrements the iteration index. The iteration 
ended when n reaches 1 or its initial value is 0 (i.e., f i b ( 0 ) ) .  Unlike a regular flowchart, the 
operations in an ASMD block can be performed concurrently in the same clock cycle. We 
put all comparison and RT operations in the op state to reduce the computation time. Note 
that the new values of the t 1 and t O  registers are loaded at the same time when the FSMD 
exits the op state (i.e., at the next rising edge of the clock). Thus, the original value of t l ,  
not t l+tO, is stored to t o .  The purpose of the done state is to generate the one-clock-cycle 
done-tick signal to indicate completion of the computation. This state can be omitted if 
this status signal is not needed. 

The code follows the ASMD chart and is shown in Listing 6.4. Note that the Fibonacci 
function grows rapidly and the output signal should be wide enough to accommodate the 
desired result. 

Listing 6.4 Fibonacci number circuit 

l i b r a r y  ieee; 
use  ieee. std-logic-1164, a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  fib i s  

5 port  ( 
clk, reset: in  std-logic; 
start : in  std-logic; 
i : in  std-logic-vector (4 downto 0)  ; 
ready, done-tick: out std-logic; 

10 f :  out  std-logic-vector ( 1 9  downto 0 )  

) ;  
end fib; 

a r c h i t e c t u r e  arch of fib i s  
15 type  state-type i s  (idle,op,done); 

s i g n a l  state-reg , state-next : state-type; 
s i g n a l  to-reg , to-next : unsigned (19 downto 0 )  ; 
s i g n a l  tl-reg, tl-next : unsigned(l9 downto 0 )  ; 
s i g n a l  n-reg , n-next : unsigned (4 downto 0)  ; 

-- f s m d  s t a t e  a n d  d a t a  r e g i s t e r s  
p r o c e s s  (clk, reset) 
begin  

20 beg in  

i f  reset=’l’ then 
25 state-reg <= idle; 

to-reg <= ( o t h e r s = > ’ O ’ ) ;  
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30 

t i - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
n - r e g  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
t 0 - r e g  <= t o - n e x t ;  
t l - r e g  <= t l - n e x t ;  
n - r e g  <= n - n e x t ;  

e I s i f ( c l k  ’ e v e n t  and c l k =  ’ 1 ’ ) then 

end i f  ; 
35 end p r o c e s s ;  

-- f s m d  n e x t - s t a t e  l o g i c  
p r o c e s s  ( s t a t e - r e g  , n - r e g  , t o - r e g  , t l - r e g ,  s t a r t  , i n - n e x t )  

40 

45 

begin  
r e a d y  < = ’ O ’ ;  
d o n e - t i c k  <= ’ 0 ’ ;  
s t a t e - n e x t  <= s t a  
t o - n e x t  <= t o - r e g  
t l - n e x t  <= t l - r e g  
n - n e x t  <= n - r e g ;  
case  s t a t e - r e g  i s  

when i d l e  => 

e - r e g  ; 

50 

55 

M1 

65 

r e a d y  <= ’ 1 ’ ;  
i f  s t a r t = ’ l ’  then 

t o - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
t i - n e x t  <= ( 0 = > ’ 1 ’ ,  o t h e r s = > ’ O ’ ) ;  
n - n e x t  <= u n s i g n e d ( i ) ;  
s t a t e - n e x t  <= o p ;  

end i f  ; 
when op => 

i f  n-reg=O then 
t i - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
s t a t e - n e x t  <= d o n e ;  

s t a t e - n e x t  <= d o n e ;  

t l - n e x t  <= t l - r e g  + t o - r e g ;  
t o - n e x t  <= t l - r e g ;  
n - n e x t  <= n - r e g  - 1; 

e l s i f  n - r e g = l  then 

e l s e  

end i f  ; 
when done  = >  

d o n e - t i c k  <= ’ 1 ’ ;  
s t a t e - n e x t  <= i d l e ;  

end c a s e ;  
end p r o c e s s ;  

f <= std-logic-vector(tl-reg); 
70 -- o u t p u t  

end a r c h ;  

6.3.2 Division circuit 

Because of complexity, the division operator cannot be synthesized automatically. We use 
an FSMD to implement the long-division algorithm in this subsection. The algorithm is 
illustrated by the division of two 4-bit unsigned integers in Figure 6.10. The algorithm can 
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rh 

divisor 

0 0 11 0 - quotient 
0 0 1 0 1 0 0 0 0 1 10 1 - dividend 

0000 
0001 
0000 
0011 

rI 

Figure 6.10 Long division of two 4-bit unsigned integers. 

Figure 6.11 Sketch of division circuit’s data path. 

be summarized as follows: 
1. Double the dividend width by appending 0’s in front and align the divisor to the 

leftmost bit of the extended dividend. 
2.  If the corresponding dividend bits are greater than or equal to the divisor, subtract the 

divisor from the dividend bits and make the corresponding quotient bit 1. Otherwise, 
keep the original dividend bits and make the quotient bit 0. 

3. Append one additional dividend bit to the previous result and shift the divisor to the 
right one position. 

4. Repeat steps 2 and 3 until all dividend bits are used. 
The sketch of the data path is shown in Figure 6.11. Initially, the divisor is stored in the 

d register and the extended dividend is stored in the rh and rl registers. In each iteration, 
the rh and rl registers are shifted to the left one position. This corresponds to shifting the 
divisor to the right of the previous algorithm. We can then compare rh and d and perform 
subtraction if r h  is greater than or equal to d. When r h  and rl are shifted to the left, the 
rightmost bit of rl becomes available. It can be used to store the current quotient bit. After 



DESIGN EXAMPLES 145 

we iterate through all dividend bits, the result of the last subtraction is stored in r h  and 
becomes the remainder of the division, and all quotients are shifted into rl. 

The ASMD chart of the division circuit is somewhat similar to that of the previous 
Fibonacci circuit. The FSMD consists of four states, i d l e ,  op, l a s t ,  and done. To make 
the code clear, we extract the compare and subtract circuit to separate code segments. The 
main computation is performed in the op state, in which the dividend bits and divisor are 
compared and subtracted and then shifted left 1 bit. Note that the remainder should not be 
shifted in the last iteration. We create a separate state, last, to accommodate this special 
requirement. As in the preceding example, the purpose of the done state is to generate a 
one-clock-cycle done-t i ck  signal to indicate completion of the computation. The code is 
shown in Listing 6.5. 

Listing 6.5 Division circuit 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use  i e e e .  n u m e r i c - s t d .  a l l  ; 
e n t i t y  d i v  i s  

5 g e n e r i c  ( 
W : 
C B I T :  i n t e g e r  : = 4  -- CBIT=logZ ( W ) + l  

i n t e g e r  : = 8  ; 

1 ;  
port  ( 

10 c l k ,  r e s e t :  in  s t d - l o g i c ;  
s t a r t  : in  s t d - l o g i c ;  
d v s r  , d v n d :  i n  s t d - l o g i c - v e c t o r  (W-1 downto 0 )  ; 
r e a d y ,  d o n e - t i c k :  out  s t d - l o g i c  ; 
q u o ,  r m d :  out  s t d - l o g i c - v e c t o r  (W-1 downto 0)  

15 ) ;  

end d i v ;  

a r c h i t e c t u r e  a r c h  of  d i v  i s  
type  s t a t e - t y p e  i s  ( i d l e , o p , l a s t  , d o n e ) ;  

s i g n a l  r h - r e g  , r h - n e x t  : u n s i g n e d ( W - 1  downto 0)  ; 
s i g n a l  r l - r e g  , r l - n e x t  : s t d - l o g i c - v e c t o r  (W-1 downto 0)  ; 
s i g n a l  r h - t m p :  u n s i g n e d ( W - 1  downto 0)  ; 
s i g n a l  d - r e g  , d - n e x t  : u n s i g n e d ( W - 1  downto 0 )  ; 

s i g n a l  q - b i t  : s t d - l o g i c ;  

-- f s m d  s t a t e  a n d  d a t a  r e g i s t e r s  
p r o c e s s  ( c l k ,  r e s e t )  

x s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  

25 s i g n a l  n - r e g  , n - n e x t  : u n s i g n e d ( C B 1 T - 1  downto 0)  ; 

beg in  

30 beg in  
i f  r e s e t = ’ l ’  then 

s t a t e - r e g  <= i d l e ;  
r h - r e g  <= ( o t h e r s = >  ’ 0  ’ ) ;  
r l - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
d - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
n - r e g  <= ( o t h e r s = >  ’ 0  ’ )  ; 

s t a t e - r e g  <= s t a t e - n e x t ;  
r h - r e g  <= r h - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 
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40 r l - r e g  <= r l - n e x t ;  
d - r e g  <= d - n e x t ;  
n - r e g  <= n - n e x t ;  

end i f  ; 
end p r o c e s s ;  

-- f s m d  n e x t - s t a t e  l o g i c  and  d a t a  p a t h  l o g i c  
p r o c e s s  ( s t a t e - r e g  , n - r e g  , r h - r e g  , r l - r e g  , d - r e g ,  

s t a r t ,  d v s r  , dvnd , q - b i t  , rh- tmp , n - n e x t )  
beg in  

45 

50 r e a d y  < = ’ O ’ ;  
d o n e - t i c k  <= ’ 0 ’ ;  
s t a t e - n e x t  <= s t a t e - r e g ;  
r h - n e x t  <= r h - r e g ;  
r l - n e x t  <= r l - r e g ;  

55 

60 

65 

70 

75 

80 

85 

90 

d - n e x t  <= d - r e g ;  
n - n e x t  <= n - r e g ;  
c a s e  s t a t e - r e g  i s  

when i d l e  = >  
r e a d y  <= ’1’; 
i f  s t a r t = ’ l ’  then 

r h - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
r l - n e x t  <= d v n d ;  __ d i v i d e n d  
d - n e x t  <= u n s i g n e d ( d v s r 1  ; __ d i v i s o r  
n - n e x t  <= t o - u n s i g n e d ( W + l ,  CBIT); -- i n d e x  
s t a t e - n e x t  <= o p ;  

end i f  ; 
when op => 

__ s h i f t  r h  and  r l  l e f l  
r l - n e x t  <= r l - r e g ( W - 2  downto 0 )  & q - b i t ;  
r h - n e x t  <= rh- tmp(W-2 downto 0 )  & r l - r e g ( W - 1 ) ;  
- - d e c r e a s e  i n d e x  
n - n e x t  <= n - r e g  - 1; 
i f  ( n - n e x t = l )  then 

end i f  ; 

r l - n e x t  <= r l - r e g ( W - 2  downto 0 )  & q - b i t ;  
r h - n e x t  <= r h - t m p ;  
s t a t e - n e x t  <= d o n e ;  

s t a t e - n e x t  <= i d l e ;  
d o n e - t i c k  <= ’ 1 ’ ;  

s t a t e - n e x t  <= l a s t ;  

when l a s t  => -- l a s t  i t e r a t i o n  

when done  = >  

end c a s e ;  
end p r o c e s s ;  

__ c o m p a r e  and  s u b t r a c t  
p r o c e s s  ( r h - r e g  , d - r e g )  
beg in  

i f  r h - r e g  >= d - r e g  then 
rh- tmp <= r h - r e g  - d - r e g ;  
q - b i t  <= ’ 1 ’ ;  

e l s e  
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rh-tmp <= rh-reg; 
q-bit <= ' 0 ' ;  

9 F  end i f  ; 
end p r o c e s s ;  

__ o u t p u t  
quo <= rl-reg; 

100 rmd <= std-logic-vector (rh-reg) ; 
end arch; 

6.3.3 Binary-to-BCD conversion circuit 

We discussed the BCD format in Section 4.5.2. In this format, a decimal number is rep- 
resented as a sequence of 4-bit BCD digits. A binary-to-BCD conversion circuit converts 
a binary number to the BCD format. For example, the binary number "0010 0000 0000" 
becomes "0101 0001 0010" (i.e., 51210) after conversion. 

The binary-to-BCD conversion can be processed by a special BCD shift register, which 
is divided into 4-bit groups internally, each representing a BCD digit. Shifting a BCD 
sequence to the left requires adjustment if a BCD digit is greater than 910 after shifting. 
For example, if a BCD sequence is "0001 01 11" (i.e., 1710), it should become "001 1 0100" 
(i.e., 3410) rather than "0010 11 10". The adjustment requires subtracting 1010 (i.e., I l l O l O " )  
from the right BCD digit and adding 1 (which can be considered as a carry-out) to the next 
BCD digit. Note that subtracting 1010 is equivalent to adding 610 for a4-bit binary number. 
Thus, the foregoing adjustment can also be achieved by adding 610 to the right BCD digit. 
The carry-out bit is generated automatically in this process. 

In the actual implementation, it is more efficient to first perform the necessary adjustment 
on a BCD digit and then shift. We can check whether a BCD digit is greater than 410 and, 
if this is the case, add 310 to the digit. After all the BCD digits are corrected, we can then 
shift the entire register to the left one position. A binary-to-BCD conversion circuit can 
be constructed by shifting the binary input to a BCD shift register bit by bit, from MSB to 
LSB . 

1. 

2. 

3. 

[ts operation can be summarized as follows: 
For each 4-bit BCD digit in a BCD shift register, check whether the digit is greater 
than 4. If this is the case, add 310 to the digit. 
Shift the entire BCD register left one position and shift in the MSB of the input binary 
sequence to the LSB of the BCD register. 
Repeat steps 1 and 2 until all input bits are used. 

The conversion process of a 7-bit binary input, "1 11 11 11" (i.e., 12710), is demonstrated in 
Table 6.1. 

The code of a 13-bit conversion circuit is shown in Listing 6.6. It uses a simple FSMD to 
control the overall operation. When the start signal is asserted, the binary input is stored 
into the p2s register. The FSM then iterates through the 13 bits, similar to the process 
described in previous examples. Four adjustment circuits are used to correct the four BCD 
digits. For clarity, they are isolated from the next-state logic and described in a separate 
code segment. 

Listing 6.6 Binary-to-BCD conversion circuit 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
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Table 6.1 Binary-to-BCD conversion example 

Special BCD shift register 
Operation Binary 

BCD BCD BCU input 
digit 2 digit 1 digit 0 

Initial 

Bit 6 no adjustment 
111 1111 

shift left 1 bit 1 11 1111 
(1 10) 

(310) 

Bit 5 no adjustment 
shift left 1 bit 11 1 1111 

Bit 4 no adjustment 
shift left 1 bit 111 1111 

(710) 
Bit 3 BCD digit 0 adjustment 1 0 1 0  

Bit 2 BCD digit 0 adjustment 1 1 0 0 0  

shift left 1 bit 1 0 1 0 1  111 

(110) (510) 

(310) (110)  
shift left 1 bit 11 0 0 0 1  11 

Bit 1 no adjustment 
shift left 1 bit 1 1 0  0 0 1 1  1 

(610) (310) 
Bit 0 BCD digit 1 adjustment 1 0 0 1  0 0 1 1  

shift left 1 bit 1 0 0 1 0  0 1 1 1  
(110) (210) (710) 

e n t i t y  bin2bcd i s  
5 p o r t (  

clk: in std-logic; 
reset : in std-logic; 
start : in std-logic ; 
bin: in std-logic-vector (12 downto 0) ; 

bcd3,bcd2,bcdl,bcdO: out  std-logic-vect 
10 ready, done-tick: out  std-logic ; 

) ;  
end bin2bcd : 

r(3 d wnto 0) 

15 a r c h i t e c t u r e  arch of bin2bcd i s  
type  state-type i s  (idle, op, done); 
s i g n a l  state-reg , state-next : state-type; 
s i g n a l  p2s_reg, p2s-next: std-logic-vector (12 downto 0 )  ; 
s i g n a l  n-reg , n-next : unsigned (3 downto 0) ; 

zo s i g n a l  bcd3_reg, bcd2_reg, bcdl-reg, bcd0-reg: 
unsigned (3 downto 0 )  ; 

unsigned (3 downto 0) ; 
s i g n a l  bcd3-nextt bcd2_next, bcdl-next , bcd0-next : 

s i g n a l  bcd3-tmpI bcd2_trnp, bcdl-tmp, bcd0-tmp: 
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25 unsigned (3 downto 0)  ; 
begin  

__ s t a t e  and  d a t a  r e g i s t e r s  
p r o c e s s  (clk , reset) 
begin  

30 i f  reset=’l’ then 

35 

45 

state-reg <= idle; 
p2s-reg <= ( o t h e r s = > ’ O ’ ) ;  
n-reg <= ( o t h e r s = > ’ O ’ ) ;  
bcd3-reg <= ( o t h e r s = > ’ O ’ ) ;  
bcd2-reg <= ( o t h e r s = > ’ O ’ ) ;  
bcdl-reg <= ( o t h e r s = > ’ O ’ ) ;  
bcd0-reg <= ( o t h e r s = > ’ O ’ ) ;  

state-reg <= state-next; 
p2s-reg <= p2s-next ; 
n-reg <= n-next; 
bcd3-reg <= bcd3-next ; 
bcd2-reg <= bcd2-next ; 
bcdl-reg <= bcdl-next; 
bcd0-reg <= bcd0-next ; 

e 1 s i f (clk ’ event and clk= ’ 1 ’ then 

end i f  ; 
end p r o c e s s ;  

-- f s m d  n e x t - s t a t e  l o g i c  / d a t a  p a t h  o p e r a t i o n s  
p r o c e s s  (state-reg ,start ,p2s_reg ,n-reg ,n-next, bin, 50 

bcdO_reg,bcdl-reg,bcd2-reg,bcd3-reg, 
b c d O - t m p , b c d l - t m p , b c d 2 ~ t m p , b c d 3 _ t m p )  

begin  
state-next <= state-reg; 

55  

M) 

65 

70 

75 

ready <= ’ 0 ’  ; 
done-tick <= ’ 0 ’ ;  
p2s-next <= p2s-reg; 
bcd0-next <= bcd0-reg; 
bcdl-next <= bcdl-reg; 
bcd2-next <= bcd2-reg; 
bcd3-next <= bcd3-reg; 
n-next <= n-reg; 
case  state-reg i s  

when idle = >  
ready <= ’ 1 ’ ;  
i f  start=’l’ then 

state-next <= op; 
bcd3-next <= ( o t h e r s = > ’ O ’ ) ;  
bcd2-next <= ( o t h e r s = > ’ O ’ ) ;  
bcdl-next <= ( o t h e r s = > ’ O ’ ) ;  
bcd0-next <= ( o t h e r s = > ’ O ’ ) ;  
n-next < = “ 1 1 0 1 “ ;  -- i n d e x  
p2s-next <= bin; -- i n p u t  s h i f t  r e g i s t e r  
state-next <= op; 

end i f  ; 
when op => 

-_ s h i f t  i n  b i n a r y  b i i  
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p2s-next <= p2s_reg(ll downto 0 )  & ' 0 ' ;  
__ s h i f t  4 BCD d i g i t s  
bcd0-next <= bcd0-tmp (2 downto 0)  & p2s-reg (12) ; 
bcdl-next <= bcdl-tmp (2 downto 0)  & bcd0-tmp (3) ; 
bcd2-next <= bcd2-tmp (2 downto 0)  & bcdl-tmp (3) ; 
bcd3-next <= bcd3-tmp (2 downto 0)  & bcd2-tmp (3) ; 
n-next <= n-reg - 1 ;  
i f  (n-next=O) t h e n  

end i f  ; 
when done =>  

state-next <= i d l e ;  
done-tick <= '1'; 

state-next <= d o n e ;  

end c a s e ;  
end p r o c e s s ;  

-- d a t a  p a t h  f u n c t i o n  u n i t s  
95 -- f o u r  BCD a d j u s t m e n t  c i r c u i t s  

bcd0-tmp <= bcd0-reg + 3 when bcd0-reg > 4 e l s e  

bcdl-tmp <= bcdl-reg + 3 when bcdl-reg > 4 e l s e  

100 bcd2-tmp <= bcd2-reg + 3 when bcd2-reg > 4 e l s e  

bcd3-tmp <= bcd3-reg + 3 when bcd3-reg > 4 e l s e  

bcd0-reg ; 

bcdl-reg ; 

bcd2-reg; 

bcd3-reg; 

105 -- o u t p u t  
bcdO <= std-logic-vector(bcdO-reg); 
bcdl <= std-logic-vector(bcdl-reg); 
b c d 2  <= s t d - l o g i c - v e c t o r ( b c d 2 - r e g ) ;  
b c d 3  <= std-logic-vector(bcd3-reg); 

110 end arch; 

6.3.4 Period counter 

A period counter measures the period of a periodic input waveform. One way to construct 
the circuit is to count the number of clock cycles between two rising edges of the input 
signal. Since the frequency of the system clock is known, the period of the input signal 
can be derived accordingly. For example, if the frequency of the system clock is f and the 
number of clock cycles between two rising edges is N ,  the period of the input signal is 
N *  1. - f  

The design in this subsection measures the period in milliseconds. Its ASMD chart is 
shown in Figure 6.12. The period counter takes a measurement when the start  signal is 
asserted. We use a rising-edge detection circuit to generate a one-clock-cycle tick, edge, to 
indicate the rising edge of the input waveform. After s tart  is asserted, the FSMD moves to 
the waite state to wait for the first rising edge of the input. It then moves to the count state 
when the next rising edge of the input is detected. In the count state, we use two registers 
to keep track of the time. The t register counts for 50,000 clock cycles, from 0 to 49,999, 
and then wraps around. Since the period of the system clock is 20 ns, the t register takes 
1 ms to circulate through 50,000 cycles. The p register counts in terms of milliseconds. It 
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ready <='I ' 

edger1 

t=49,999 (-pT) P + P + l  t t t t l  

T 4-h t=49,999 

(-3-6:) 
................................. 1 ..................... 

donetick<=l 

Figure 6.12 ASMD chart of a period counter. 
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is incremented once when the t register reaches 49,999. When the FSMD exits the count 
state, the period of the input waveform is stored in the p register and its unit is milliseconds. 
The FSMD asserts the done-tick signal in the done state, as in previous examples. 

The code follows the ASMD chart and is shown in Listing 6.7. We use a constant, 
CLKMSXOUNT, for the boundary of the millisecond counter. It can be replaced if a different 
measurement unit is desired. 

Listing 6.7 Period counter 

l i b r a r y  i e e e ;  
use  i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use  i e e e  . n u m e r i c - s t d .  a l l  ; 
e n t i t y  p e r i o d - c o u n t e r  i s  

s p o r t (  
c l k ,  r e s e t :  in  s t d - l o g i c ;  
s t a r t ,  s i :  in  s t d - l o g i c ;  
r e a d y ,  d o n e - t i c k :  out  s t d - l o g i c ;  
p r d :  out  s t d - l o g i c - v e c t o r  ( 9  downto 0)  

10 1 ; 
end p e r i o d - c o u n t e r ;  

a r c h i t e c t u r e  a r c h  of  p e r i o d - c o u n t e r  i s  
c o n s t a n t  CLK-MS-COUNT: i n t e g e r  : =  5 0 0 0 0 ;  -- 1 ms t i c k  

I S  type  s t a t e - t y p e  i s  ( i d l e ,  w a i t e ,  c o u n t ,  d o n e ) ;  
s i g n a l  s t a t e - r e g ,  s t a t e - n e x t  : s t a t e - t y p e ;  
s i g n a l  t - r e g  , t - n e x t  : u n s i g n e d  (15 downto 0 )  ; 
s i g n a l  p - r e g  , p - n e x t  : u n s i g n e d  ( 9  downto 0)  ; 
s i g n a l  d e l a y - r e g  : s t d - l o g i c  ; 

20 s i g n a l  e d g e :  s t d - l o g i c ;  
beg in  

__ s t a t e  and d a t a  r e g i s t e r  
p r o c e s s  ( c l k ,  r e s e t )  
beg in  

25 i f  r e s e t = ’ l ’  then 
s t a t e - r e g  <= i d l e ;  
t - r e g  <= ( o t h e r s = > ) O ’ ) ;  
p - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
d e l a y - r e g  <= ’ 0 ’  ; 

s t a t e - r e g  <= s t a t e - n e x t ;  
t - r e g  <= t - n e x t  ; 
p - r e g  <= p - n e x t ;  
d e l a y - r e g  <= s i ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

35 end i f  ; 
end p r o c e s s ;  

30 

__ e d g e  d e t e c t i o n  c i r c u i t  
e d g e  <= ( n o t  d e l a y - r e g )  and s i ;  

-- f s m d  n e x t - s t a t e  l o g i c  / d a t a  p a t h  o p e r a t i o n s  
p r o c e s s  ( s t a r t ,  e d g e ,  s t a t e - r e g  , t - r e g  , t - n e x t  , p - r e g )  
beg in  

40 

r e a d y  <= ’ 0 ’ ;  
45 d o n e - t i c k  <= ’ 0 ) ;  
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s t a t e - n e x t  <= s t a t e - r e g ;  
p - n e x t  <= p - r e g ;  
t - n e x t  <= t - r e g ;  
case  s t a t e - r e g  i s  

when i d l e  => 
r e a d y  <= ’ 1  ’ ; 
i f  ( s t a r t = ’ l ’ )  then 

end i f  ; 

i f  ( e d g e = ’ l ’ )  then 

s t a t e - n e x t  <= w a i t e ;  

when w a i t e  => -- w a i t  for t h e  f i r s t  e d g e  

s t a t e - n e x t  <= c o u n t ;  
t - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
p - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  

end i f  ; 
when c o u n t  = >  

i f  ( e d g e = ’ l ’ )  then -- 2 n d  e d g e  a r r i v e d  

e l s e  -- o t h e r w i s e  c o u n t  
s t a t e - n e x t  <= d o n e ;  

i f  t - r e g  = CLK-MS-COUNT-1 then -- l m s  t i c k  
t - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
p - n e x t  <= p - r e g  + 1;  

t - n e x t  <= t - r e g  + 1;  
e l s e  

end i f  ; 
end i f  ; 

when done  => 
d o n e - t i c k  <= ’ 1 ’ ;  

50 

60 

65  

70 

s t a t e - n e x t  <= i d l e ;  
7 5  end c a s e ;  

end p r o c e s s ;  
p r d  <= std-logic-vector(p-reg); 

end a r c h ;  

6.3.5 Accurate low-frequency counter 

A frequency counter measures the frequency of a periodic input waveform. The common 
way to construct a frequency counter is to count the number of input pulses in a fixed amount 
of time, say, 1 second. Although this approach is fine for high-frequency input, it cannot 
measure a low-frequency signal accurately. For example, if the input is around 2 Hz, the 
measurement cannot tell whether it is 2.123 Hz or 2.567 Hz. Recall that the frequency 
is the reciprocal of the period (i.e., frequency = A). An alternative approach is to 
measure the period of the signal and then take the reciprocal to find the frequency. We use 
this approach to implement a low-frequency counter in this subsection. 

This design example demonstrates how to use the previously designed parts to construct 
a large system. For simplicity, we assume that the frequency of the input is between 1 and 
10 Hz (i.e., the period is between 100 and 1000 ms). The operation of this circuit includes 
three tasks: 

1. Measure the period. 
2. Find the frequency by performing a division operation. 
3. Convert the binary number to BCD format. 
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We can use the period counter, division circuit, and binary-to-BCD converter to perform 
the three tasks and create another FSM as the master control to sequence and coordinate 
the operation of the three circuits. The block diagram is shown in Figure 6.13(a), and the 
ASM chart of the master control is shown in Figure 6.13(b). The FSM uses the start and 
done-tick signals of these circuits to initialize each task and to detect completion of the 
task. The code is shown in Listing 6.8. 

Listing 6.8 Low-frequency counter 

library ieee; 
use ieee. std-logic-1164. all ; 
use ieee . numeric-std. all ; 
entity low-freq-counter is 

5 port ( 
clk, reset: in std-logic; 
start : in std-logic; 
si: in std-logic; 
bcd3, bcd2, bcdl , bcdO : out std-logic-vector (3 downto 0 )  

10 ) ;  
end low-freq-counter; 

architecture arch of low-freq-counter is 
type state-type is (idle, count, frq, b2b); 

15 signal state-reg, state-next : state-type; 
signal prd: std-logic-vector (9 downto 0 )  ; 
signal dvsr , dvnd, quo : std-logic-vector (19 downto 0)  ; 
signal prd-start , div-start , b2b-start : std-logic; 
signal prd-done-t ick , div-done-t i ck , b2b-done-t i ck : 

20 std-logic; 
begin 

............................................... --______________________________________--------- 
__ c o m p o n e n t  i n s t a n t i a t i o n  

-_--_-_-_--_---_-_----------------------------- ............................................... __ 

25 -- i n s t a n t i a t e  p e r i o d  c o u n t e r  
prd-count-unit: entity work.period-counter 
port map(clk=>clk, reset=>reset , start=>prd-start , si=>si, 

ready=>open, done-tick=>prd-done-tick , prd=>prd); 
__ i n s t a n t i a t e  d i v i s i o n  c i r c u i t  

generic map(W=>20, C B I T = > 5 )  
port map(clk=>clk, reset=>reset , start=>div-start , 

30 div-unit : entity work. div 

dvsr=>dvsr , dvnd=>dvnd, quo=>quo, rmd=>open, 
ready=>open, done-tick=>div-done-tick); 

35 -- i n s t a n t i a t e 
bin2bcd-unit : entity work. bin2bcd 
port map 

b i n a r y - t o  -BCD c o n v e r t o r 

(clk=>clk, reset=>reset , start=>b2b_start, 
bin=>quo (12 downto 0)  , ready=>open, 

bcd3=>bcd3, bcd2=>bcd2, bcdl=>bcdl, bcdO=>bcdO); 
40 done_tick=>b2b_done_tick, 

__ s i g n a l  w i d t h  e x t e n s i o n  
dvnd <= s t d ~ l o g i c ~ v e c t o r ( t o ~ u n s i g n e d ( l O O O O O 0 ,  20)); 
dvsr <= "0000000000" & prd; 

45 
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Figure 6.13 Accurate low-frequency counter. 
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-- 

-- m a s t e r  FSM 

p r o c e s s  ( c l k ,  r e s e t )  
50 b e g i n  

i f  r e s e t = ’ l ’  t h e n  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  t h e n  
s t a t e - r e g  <= i d l e ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
S i  end i f ;  

end p r o c e s s ;  

65 

15  

no 

p r o c e s s  ( s t a t e - r e g  , s t a r t ,  
prd_done-tick,div-done-tick,b2b-done-tick) 

60 b e g i n  
s t a t e - n e x t  <= s t a t e - r e g  ; 
p r d - s t a r t  < = ’ O ’ ;  
d i v - s t a r t  < = ’ O ’  ; 
b 2 b - s t a r t  < = ’ O ’ ;  
c a s e  s t a t e - r e g  i s  

when i d l e  = >  
i f  s t a r t = ’ l ’  t h e n  

s t a t e - n e x t  <= c o u n t  ; 
p r d - s t a r t  <=’1 ’ ;  

end i f  ; 
when c o u n t  => 

i f  ( p r d - d o n e - t i c k = ’ l ’ )  t h e n  
d i v - s t a r t  < = ’ l ’ ;  
s t a t e - n e x t  <= f r q ;  

end i f  ; 

i f  ( d i v - d o n e - t i c k = ’ l ’ )  t h e n  
when f r q  => 

b 2 b - s t a r t  < = ’ l ’ ;  
s t a t e - n e x t  <= b 2 b ;  

end i f ;  

i f  ( b 2 b _ d o n e _ t i c k =  ’1 ’1  then 

end i f  ; 

when b2b =>  

s t a t e - n e x t  <= i d l e ;  

RS end c a s e ;  
end p r o c e s s ;  

end a r c h ;  

6.4 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 3. 
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6.5 SUGGESTED EXPERIMENTS 

6.5.1 Alternative debouncing circuit 

Consider the alternative debouncing circuit in Experiment 5.5.2. Redesign the circuit using 
the RT methodology: 

1. Derive the ASMD chart for the circuit. 
2. Derive the HDL code based on the ASMD chart. 
3. Replace the debouncing circuit in Section 6.2.5 with the alternative design and verify 

its operation. 

6.5.2 BCD-to-binary conversion circuit 

A BCD-to-binary conversion converts a BCD number to the equivalent binary representa- 
tion. Assume that the input is an %bit signal in BCD format (i.e., two BCD digits) and the 
output is a 7-bit signal in binary representation. Follow the procedure in Section 6.3.3 to 
design a BCD-to-binary conversion circuit: 

1. Derive the conversion algorithm and ASMD chart. 
2.  Derive the HDL code based on the ASMD chart. 
3. Derive a testbench and use simulation to verify operation of the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.3 Fibonacci circuit with BCD I/O: design approach 1 

To make the Fibonacci circuit more user friendly, we can modify the circuit to use the BCD 
format for the input and output. Assume that the input is an &bit signal in BCD format 
(i.e., two BCD digits) and the output is displayed as four BCD digits on the seven-segment 
LED display. Furthermore, the LED will display “9999“ if the resulting Fibonacci number 
is larger than 9999 (i.e., overflow). The operation can be done in three steps: convert input 
to the binary format, compute the Fibonacci number, and convert the result back to the BCD 
format. 

The first design approach is to follow the procedure in Section 6.3.5. We first construct 
three smaller subsystems, which are the BCD-to-binary conversion circuit, Fibonacci cir- 
cuit, and binary-to-BCD conversion circuit, and then use a master FSM to control the overall 
operation. Design the circuit as follows: 

1. Implement the BCD-to-binary conversion circuit in Experiment 6.5.2. 
2. Modify the Fibonacci number circuit in Section 6.3.1 to include an output signal to 

3. Derive the top-level block diagram and the master control FSM state diagram. 
4. Derive the HDL code. 
5 .  Derive a testbench and use simulation to verify operation of the code. 
6. Synthesize the circuit, program the FPGA, and verify its operation. 

indicate the overflow condition. 

6.5.4 Fibonacci circuit with BCD I/O: design approach 2 

An alternative to the previous “subsystem approach” in Experiment 6.5.3 is to integrate 
the three subsystems into a single system and derive a customized FSMD for this partic- 
ular application. The approach eliminates the overhead of the control FSM and provides 
opportunities to share registers among the three tasks. Design the circuit as follows: 
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1. Redesign the circuit of Experiment 6.5.3 using one FSMD. The design should elimi- 
nate all unnecessary circuits and states, such as the various done-tick signals and the 
done states, and exploit the opportunity to share and reuse the registers in different 
steps. 

2. Derive the ASMD chart. 
3. Derive the HDL code based on the ASMD chart. 
4. Derive a testbench and use simulation to verify operation of the code. 
5. Synthesize the circuit, program the FPGA and verify its operation. 
6. Check the synthesis report and compare the number of LEs used in the two approaches. 
7. Calculate the number of clock cycles required to complete the operation in the two 

approaches. 

6.5.5 Au to-scaled low-f requency counter 

The operation of the low-frequency counter in Section 6.3.5 is very restricted. The frequency 
range of the input signal is limited between 1 and 10 Hz. It loses accuracy when the 
frequency is beyond this range. Recall that the accuracy of this frequency counter depends 
on the accuracy of the period counter of Section 6.3.5, which counts in terms of millisecond 
ticks. We can modify the t counter to generate a microsecond tick (i.e., counting from 0 
to 49) and increase the accuracy 1000-fold. This allows the range of the frequency counter 
to increase to 9999 Hz and still maintain at least four-digit accuracy. 

Using a microsecond tick introduces more than four accuracy digits for low-frequency 
input, and the number must be shifted and truncated to be displayed on the seven-segment 
LED. An auto-scaled low-frequency counter performs the adjustment automatically, dis- 
plays the four most significant digits, and places a decimal point in the proper place. For 
example, according to their range, the frequency measurements will be shown as 1.234", 
"12.34", "123.4", or "1234". 

The auto-scaled low-frequency counter needs an additional BCD adjustment circuit. It 
first checks whether the most significant BCD digit (i.e., the four MSBs) of a BCD sequence 
is zero. If this is the case, the circuit shifts the BCD sequence to the left four positions and 
increments the decimal point counter. The operation is repeated until the most significant 
BCD digit is not "0000". 

The complete auto-scaled low-frequency counter can be implemented as follows: 
1. Modify the period counter to use the microsecond tick. 
2 .  Extend the size of the binary-to-BCD conversion circuit. 
3. Derive the ASMD chart for the BCD adjustment circuit and the HDL code. 
4. Modify the control FSM to include the BCD adjustment in the last step. 
5. Design a simple decoding circuit that uses the decimal point counter's output to 

activate the desired decimal point of the seven-segment LED display. 
6. Derive a testbench and use simulation to verify operation of the code. 
7. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.6 Reaction timer 

Eye-hand coordination is the ability of the eyes and hands to work together to perform a 
task. A reaction timer circuit measures how fast a human hand can respond after a person 
sees a visual stimulus. This circuit operates as follows: 
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1. 

2 .  

3. 

4. 

5. 

6.  
7. 

The circuit has three input pushbuttons, corresponding to the c l e a r ,  s t a r t ,  and s t o p  
signals. It uses a single discrete LED as the visual stimulus and displays relevant 
information on the seven-segment LED display. 
A user pushes the c l e a r  button to force the circuit returning to the initial state, in 
which the seven-segment LED shows a welcome message, "HI," and the stimulus 
LED is off. 
When ready, the user pushes the start  button to initiate the test. The seven-segment 
LED goes off. 
After a random interval between 2 and 15 seconds, the stimulus LED goes on and 
the timer starts to count upward. The timer increases every millisecond and its value 
is displayed in the format of "0.000" second on the seven-segment LED. 
After the stimulus LED goes on, the user should try to push the s t o p  button as soon 
as possible. The timer pauses counting once the s t o p  button is asserted. The seven- 
segment LED shows the reaction time. It should be around 0.15 to 0.30 second for 
most people. 
If the s t o p  button is not pushed, the timer stops after 1 second and displays "1.000". 
If the s t o p  button is pushed before the stimulus LED goes on, the circuit displays 
"9.999" on the seven-segment LED and stops. 

Design the circuit as follows: 
1. Derive the ASMD chart. 
2 .  Derive the HDL code based on the ASMD chart. 
3. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.7 Babbage difference engine emulation circuit 

The Babbage difference engine is a mechanical digital computation device designed to 
tabulate a polynomial function. It was proposed by Charles Babbage, an English mathe- 
matician, in the nineteenth century. The engine is based on Newton's method of differences 
and avoids the need of multiplication. For example, consider a second-order polynomial 
f(n) = 2n2 + 372 + 5 .  We can find the difference between f ( n )  and f(n - 1): 

f ( n )  - f ( n  - 1) = 4n + 1 

Assume that n is an integer and n 2 0. The f ( n )  can be defined recursively as 

This process can be repeated for the 4n + 1 expression. Let g ( n )  = 4n + 1. We can find 
the difference between g(n) and g(n - 1): 

g(n) - g(n - 1) = 4 

The g(n)  can be defined recursively as 

and f ( n )  can be rewritten as 
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Note that only additions are involved in the recursive definitions of f ( n )  and g ( n ) .  
Based on the definition of the last two recursive equations, we can derive an algorithm 

to compute f (n ) .  Two temporary registers are needed to keep track of the most recently 
calculated f (n)  and g (n) , and two additions are needed to update f (n) and g (n) . Assume 
that n is a 6-bit input and interpreted as an unsigned integer. Design this circuit using the 
RT methodology: 

1. Derive the ASMD chart. 
2. Derive the HDL code based on the ASMD chart. 
3. Derive a testbench and use simulation to verify operation of the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 
5. Let h(n)  = n3 + 2n2 + 2n + 1. Use the method above to find the recursive rep- 

resentation of h(n) (note that three levels of recursive equations are needed for a 
three-order polynomial). Repeat steps 1 to 4. 




