Name: KEY Id#

COE 202, Term 141 Digital Logic Design

Quiz#5

Date: Thursday, Nov. 27

Q1 a. Fill in all blank cells in the two tables below.

	Equivalent decimal value with the binary interpreted as:						
Binary	Unsigned	Signed-magnitude	Signed-1's	Signed-2's	BCD		
	number	number	complement number	complement number	number		
10000000	128	-0	-127	-128	80		

	Binary representation in 8 bits:					
Decimal	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement			
			notation			
- 75	11001011	10110100	10110101			

b. Using 2's-complement signed arithmetic in 5 bits, do the following operations **in binary**. Show all your work, and:

- Verify that you get the expected decimal results.
- Check for overflow and mark clearly any overflow occurrences.

(i)		(ii)
00111 (+7)	10110 (-10)	
- 10101 (-11)	- 10011 (-13)	
00111 (+7)	10110 (-10)	
+ 01011 (+11)	+ 01101 (+13)	
10010 (-14)	00011 (+3)	,
Overflow, we added two positive numbers and we got negative result.	No overflow.	

c. Consider the signed 2's complement arithmetic operation A - B in 6 bits. With B = 101100, the largest value allowed for A in order to avoid the occurrence of overflow is $(01011)_2$.

A- B = A + 2's comp. B = A +
$$01100$$
 = A + 20. The largest positive value without overflow is +31. Thus A+20=31 => A=11

Q2 Assume that the delay of a 2-input XOR gate is 3ns while the delay of other gates is equal to the gate's number of inputs, i.e. the delay of an inverter is 1ns, the delay of a 2-input AND gate is 2ns, the delay of a 2-input OR is 2ns, the delay of a 3-input AND gate is 3ns, the delay of a 3-input OR gate is 3ns, etc.

(a) (6 points) A 4-bit Ripple Carry Adder (RCA) is given below:

Determine and compute the **longest delay** in the **4-bit Ripple Carry Adder** (RCA).

The longest delay is **19 ns** which is along the path from {A0 B0} across the propagate XOR gate until the Cout signal.

(b) (4 points) Show the design of a <u>2-bit</u> Carry Look-Ahead Adder (CLA) by drawing its logic diagram.

(c) (3 points) Using the delay assumptions given in the beginning of the question, determine and compute the <u>longest delay</u> in the 2-bit Carry Look-Ahead Adder (CLA).

The longest delay is **10 ns** which is along the path from {A0 B0} across the propagate XOR gate until the S1 signal.