Name: KEY Id#

COE 202, Term 131 Digital Logic Design

Quiz#5

Date: Thursday, Nov. 28

Q1. Fill in all blank cells in the two tables below. All binary representations use 7 bits

Binary	Eq	Equivalent decimal value with the binary interpreted as:					
	Unsigned	Signed-magnitude	Signed-1's	Signed-2's			
	number	number	complement number	complement number			
1011010	90	-26	-37	-38			

	Binary representation in:				
Decimal	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement notation		
- 59	1111011	1000100	1000101		

Using 2's-complement signed arithmetic in 5 bits, perform the following operations in binary.
 Show all your work. Verify that you get the expected decimal results.

Check for overflow and mark clearly any occurrences of it.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00101 +5 -10100 -12 +17 > +15 = overflow overflow expected + 01100 overflow expected : overflow
(iii) +(-9) -4 0 0 1 0 1 1 1 -4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$= -011000$$

$$= -24$$

$$= -24 - X = -33$$

$$= -24 + 33 = +9$$

$$= 001001$$

(a) You are given **one 3-to-8 decoder**, **one NOR** gate and **one OR** gate to implement the two functions given below.

$$F_{1}(A,B,C) = \prod M(0,1,4,5,6) F_{2}(A,B,C) = \sum m(0,4,6) + \sum d(1,3)$$

$$F_{1} = \sum m(2,3,7) F_{2} = \prod M(2,5,7)$$

Draw the circuit and properly <u>label</u> all input and output lines.

(b) Given the truth table below for a function with four inputs (A, B, C and D) and one output F, implement F using a 4-to-1 MUX (with 2 select lines) and additional logic. Show how you obtained your solution, and properly <u>label</u> all input and output lines. Apply A and B to the select inputs.

A	В	С	D	F		
Ō	0	0	50	0	7 _	
0	0	0	1	1	} F=D	
0	0	1	0	0	\ '	
0	0	1		1	٦	0 1
0	1	0	0	1	γ.	1 8 / 1
0	1	0	1	1	Y F21	
0	1	1	0	1	\ ,	B = 3 2 1 0
0	1	1_	1	1)	
1	0	0	0		7 -	11
\ 1	0 \	0	1	1	} F=C	_
1	0	1	0	0	('	F
1	0	1	1	0	7	
$\sqrt{1}$	1	0	0	0	7 5 5 5	
1	1	0	1	(0)	7 F=0	
1	1	1	0	0		
1	_1	1	1	لها	J	