Name: KEY Id#

COE 202, Term 122 Digital Logic Design

Quiz# 5

Date: Monday, April 29

Q1.

(i) Design a D-Latch using only NAND gates and inverters.

(ii) Design a D-Latch using only a 2x1 Multiplexer.

(iii) Design a **rising-edge** triggered D flip flop using only D-Latches and inverters.

Q2. Design a <u>falling-edge</u> triggered JK flip flop using a <u>rising-edge</u> triggered D flip flop. Show the design steps.

Q	J	K	₽ ⁺	0
0	д	0	0	0
0	0	1	0	٥
0	1	ð		l
0		1	1	1
	<u>ه</u>	ව		1
1	ව		0	Ò
1	1	<u></u>	1	1
		l	0	٥

Q3.

(i) Derive the state table and state diagram for the following circuit with a single input X, and a single output Z and determine whether the circuit is <u>Mealy</u> or <u>Moore</u>:

The circuit is Mealy since the output depends on both the current state and the input.

$$D_{A} = \overline{(\overline{XQ_{A}})(\overline{\overline{XQ_{B}}})} = XQ_{A} + \overline{X}Q_{B}$$

$$D_{B} = \overline{Q_{A}} + \overline{X}$$

$$Z = Q_{B}(\overline{Q_{A}} + \overline{X}) = \overline{Q_{A}}Q_{B} + \overline{X}Q_{B}$$

Q_A	Q_B	X	Q_A^+	Q_B^+	Z
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	1	1
0	1	1	0	1	1
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

(ii) Complete the following waveform for the positive-edge triggered circuit that implements the state diagram provided below. Assume the circuit is initially at the state $Q_1Q_0=00$.

