Name: KEY Id#

COE 202, Term 102 Fundamentals of Computer Engineering

Quiz# 5 (Take Home)

Due date: Saturday, May 7, 2011

Q.1. It is required to design a 4-bit arithmetic and logic unit that has two 4-bit inputs $A=A_3A_2A_1A_0$ and $B=B_3B_2B_1B_0$ and one <u>6-bit output</u> $C=C_5C_4C_3C_2C_1C_0$. The circuit implements the following functions based on the values of the four selection inputs S3, S2, S1 and S0.

S3 S2 S1 S0	Function
0 0 0 0	C = A + B
0 0 0 1	C = A - B
0 0 1 0	C = A+1
0 0 1 1	C = A-1
0 1 0 0	C = A + 2
0 1 0 1	C = A - 2
0 1 1 0	C = B
0 1 1 1	C = -B
1 0 0 0	C = 2B
1 0 0 1	C = 3B
1 0 1 0	C = 4B
1 0 1 1	C = A and B
1 1 0 0	C = A or B
1 1 0 1	C = A xor B
1 1 1 0	$C = A \times B$
1 1 1 1	C = not B

- (i) Show the block diagram design of your circuit using MSI components like Adder, Multiplexor, as needed.
- (ii) Model your design in logic works.
- (iii) Test your design and verify its correctness by simulation. Show snapshots of your simulation to demonstrate its correctness. For each function, test at least 4 input combinations of your choice to demonstrate correct functionality.

We partition the design of the Arithmetic & logic unit into arithmetic unit and logic unit and we select between their outputs as shown below:

we design the select function as follows:

S = S3 52 + S3 S1 S0

The Arithmetic unit is designed as follows using one 6-bit adder:

After that, we need to find and the equations for Cin, Asi, Aso, BS2, BSI, and BS0.

Cin

4					
5352 51	50 50	٥١	11	10	-7
ردد	0	1	0	0	
۵	0	0	ı	0	
11	0	0	0	.0	
10	0	0	0	0	\
				1	-

$$C_{1n} = \overline{S_{3}} \, S_{2} \, S_{1} \, S_{0} + \overline{S_{3}} \, \overline{S_{2}} \, \overline{S_{1}} \, S_{0}$$

$$= \overline{S_{3}} \, S_{0} \, \left(S_{2} \, S_{1} + \overline{S_{2}} \, \overline{S_{1}} \right)$$

$$= \overline{S_{3}} \, S_{0} \, \left(S_{1} \, + \overline{S_{2}} \, \overline{S_{1}} \right)$$

ASI

些'				
5352) <u>তেন</u> ্	01 1	_11	10
00	0	0	0	Ö
01	0	0		
11	Ü	0	Ö	0
10		0	0	

5352 00 0 0 0 01 0 0 0 0 11 0 0 0 0

$$AS_0 = S_3 \overline{S_2} \overline{S_1} S_0$$

5352 5352	<u>00</u>	<u>ol</u>	11	col
% 2	c	0	٥	0
5 \			0	0
11	O	0	٥	O
ان			0	

$$BS2 = \overline{S_3} \, \overline{S_2} \, \overline{S_1} + \overline{S_3} \, \overline{S_2} \, \overline{S_1}$$

+ $S_3 \, \overline{S_2} \, \overline{S_0}$

$$BS1 = \overline{S_3}\overline{S_2}S_1 + S_3\overline{S_2}\overline{S_3}$$

+ $S_3\overline{S_2}\overline{S_1}$

$$BSO = \frac{1}{S_3}S_0 + \frac{1}{S_3}S_2 S_1 S_0$$

The design has been implemented in logic works and the following devices were created:

The whole ALU after integrating all the components and adding input and output is shown below:

We will show next Verification of correct functionality of the ALU by setting A=6 and B=5:

