COE 202, Term 102
 Fundamentals of Computer Engineering

Quiz\# 5 (Take Home)

Due date: Saturday, May 7, 2011
Q.1. It is required to design a 4-bit arithmetic and logic unit that has two 4-bit inputs $\mathbf{A}=\mathbf{A}_{3} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{0}$ and $\mathbf{B}=\mathbf{B}_{3} \mathbf{B}_{2} \mathbf{B}_{1} \mathbf{B}_{\mathbf{0}}$ and one 6-bit output $\mathbf{C}=\mathbf{C}_{5} \mathbf{C}_{4} \mathbf{C}_{3} \mathbf{C}_{2} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{0}}$. The circuit implements the following functions based on the values of the four selection inputs S3, S2, S1 and S 0 .

S3 S2 S1 S0	Function
0000	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
0001	$\mathrm{C}=\mathrm{A}-\mathrm{B}$
0010	$\mathrm{C}=\mathrm{A}+1$
0011	$\mathrm{C}=\mathrm{A}-1$
0100	$\mathrm{C}=\mathrm{A}+2$
0101	$\mathrm{C}=\mathrm{A}-2$
0110	$\mathrm{C}=\mathrm{B}$
$\begin{array}{lllll}011 & 1\end{array}$	$\mathrm{C}=-\mathrm{B}$
1000	$\mathrm{C}=2 \mathrm{~B}$
1001	$\mathrm{C}=3 \mathrm{~B}$
1010	$\mathrm{C}=4 \mathrm{~B}$
1011	$\mathrm{C}=\mathrm{A}$ and B
1100	$\mathrm{C}=\mathrm{A}$ or B
1101	$\mathrm{C}=\mathrm{A}$ xor B
1110	$\mathrm{C}=\mathrm{A}$ xnor B
1111	$\mathrm{C}=$ not B

(i) Show the block diagram design of your circuit using MSI components like Adder, Multiplexor, as needed.
(ii) Model your design in logic works.
(iii) Test your design and verify its correctness by simulation. Show snapshots of your simulation to demonstrate its correctness. For each function, test at least 4 input combinations of your choice to demonstrate correct functionality.
we partition the design of the Arithmetic \& logic unit into arithmetic unit and logic unit and we select between their outputs as shown below:

wee design the select function as follows:

5352				
0	150			
0	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	0

$$
s=s_{3} s_{2}+s_{3} s_{1} S_{0}
$$

Next, we design the logic unit os follows:

The Arithmetic init is designeel as follows using one σ-bit adder:

After that, we need to find ont the equations for C in, AS1, Ass, BS 2, BSI, and Bro,

Min

$$
\begin{aligned}
c_{1 n} & =\overline{s_{3}} s_{2} s_{1} s_{0}+\overline{s_{3}} \bar{s}_{2} \bar{s}_{1} s_{0} \\
& =\overline{s_{3}} s_{0}\left(s_{2} s_{1}+\overline{s_{2}} \bar{s}_{1}\right) \\
& =\bar{s}_{3} s_{0}\left(s_{1}+s_{2}\right)
\end{aligned}
$$

A SI

ADo

5352	010			
0	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	1	0	0

$$
A S_{0}=S_{3} \bar{S}_{2} \overline{S_{1}} \text { So }
$$

$$
\begin{aligned}
B S_{2}= & \overline{S_{3}} S_{2} \bar{S}_{1}+S_{3} \bar{S}_{2} \overline{S_{1}} \\
& +S_{3} \overline{S_{2}} \overline{S_{0}}
\end{aligned}
$$

BSI

$\begin{aligned} B S_{1}= & \bar{s}_{3} \bar{s}_{2} s_{1}+s_{3} \bar{s}_{2} \bar{s}_{2} \\ & +s_{3} \bar{s}_{2} \bar{s}_{1}\end{aligned}$

BSo

$$
B S_{0}=\overline{s_{3}} s_{0}+s_{3} \bar{s}_{2} s_{1} \bar{s}_{0}
$$

The design has been implemented in logic works and the following devices were created:

Device Name	Device Symbol	Logic Diagram
2x1 mux		
2x1mux4bit		
2x1mux6bit		
4x1mux		
4x1mux4bit		

8x1mux		
8x1mux6bit		
6bitadder		
LogicUnit		

The whole ALU after integrating all the components and adding input and output is shown below:

We will show next Verification of correct functionality of the ALU by setting $A=6$ and $B=5$:

