COE 202, Term 052

Fundamentals of Computer Engineering

Quiz\# 5 (Take Home)

Due date: Monday, April 17, 2006
Q.1. Assume the delay of a gate is equal to the number of its inputs, i.e. the delay of a 2-input gate is 2 , and the delay of a 3-input gate is 3 . Using Logic works do the following:
a. Model a full-adder.

b. Use the full adder model and construction from it an 8-bit Ripple Carry Adder.

In order to simplify the modeling process, we will create a symbol for the full adder cell and then connect 8 copies of it as shown below. We first connect input and output ports then create the symbol.

The simulation waveform that illustrates that the adder works properly is shown below:

c. Determine the worst case delay in your 8-bit Ripple Carry Adder by simulation.

The worst case delay is when the A \& B inputs have propoagation condition and the Cin signal is changing from 0 to 1 or from 1 to 0 . The Cout signal will change accordingly after a delay equal $2+4 * 8=34$ ns. This is exactly what is obtained by simulation as shown below.

As can be seen, the delay from the Cin signal to the Cout signal is $544-510=34 \mathrm{~ns}$.
d. Model a 4-bit Carry Look Ahead adder.

The 4-bit carry look ahead adder is modeled as shown below.

```
\(\mathrm{P} 0=\mathrm{A} 0 \oplus \mathrm{~B} 0 ; \quad \mathrm{G} 0=\mathrm{A} 0\) AND B0
\(\mathrm{S} 0=\mathrm{P} 0 \oplus \mathrm{C} 0\)
\(\mathrm{C} 0=\mathrm{G} 0+\mathrm{C} 0 \mathrm{P} 0\)
\(\mathrm{P} 1=\mathrm{A} 1 \oplus \mathrm{~B} 1 ; \quad \mathrm{G} 1=\mathrm{A} 1 \mathrm{AND} \mathrm{B} 1\)
\(\mathrm{S} 1=\mathrm{P} 1 \oplus \mathrm{C} 1\)
\(\mathrm{C} 1=\mathrm{G} 1+\mathrm{G} 0 \mathrm{P} 1+\mathrm{C} 0\) P0 P1
\(\mathrm{P} 2=\mathrm{A} 2 \oplus \mathrm{~B} 2 ; \quad \mathrm{G} 2=\mathrm{A} 2 \mathrm{AND} \mathrm{B} 2\)
\(\mathrm{S} 2=\mathrm{P} 2 \oplus \mathrm{C} 2\)
\(\mathrm{C} 1=\mathrm{G} 2+\mathrm{G} 1 \mathrm{P} 2+\mathrm{G} 0 \mathrm{P} 1 \mathrm{P} 2+\mathrm{C} 0 \mathrm{P} 0 \mathrm{P} 1 \mathrm{P} 2\)
\(\mathrm{P} 3=\mathrm{A} 3 \oplus \mathrm{~B} 3 ; \quad \mathrm{G} 3=\mathrm{A} 3\) AND B3
\(\mathrm{S} 3=\mathrm{P} 3 \oplus \mathrm{C} 3\)
C 3 = G3 + G2 P3 + G1 P2 P3 + G0 P1 P2 P3 + C0 P0 P1 P2 P3
```


e. Simulate the following values to verify that your adder works properly: $3+4$, -$1-7,3+1,2+5,3+3$.

f. Determine the longest delay in the 4-bit Carry Look Ahead adder by simulation.

The longest delay will $2+5+5=12 \mathrm{~ns}$. This is as verified by simulation shown below from the time the propagation condition is met until the carry out appears $=33-21=12 \mathrm{~ns}$..

Selection Interval 21:33
g. Construct an 8-bit adder by connecting two 4-bit Carry Look Ahead adders together.

The 8-bit adder based on two 4-bit CLA adders is shown below:

h. Determine by simulation the longest delay in the 8 -bit adder in (g).

The worst case delay is 12 (first block) $+10\left(2^{\text {nd }}\right.$ block $)=22$. This is exactly what is obtained by simulation as shown below $=113-91=22$.

Selection Interval 91:113
Q.2. It is required to design a BCD adder to perform addition in BCD representation.
a. Model a single-digit BCD adder.

b. Using the single digit BCD adder, build a 3-digit BCD adder.

c. Verify the correct functionality of the 3-digit BCD adder by simulating the following operations: $999+1,999+222,100+999,279+465$

$999+222=1221$

$100+999=1099$

$279+465=744$

Q.3. [1\% Bonus]

a. Model a 4-bit multiplier.

b. Verify the correct functionality of the 4-digit multiplier by simulating the following operations: $15 * 1,15 * 0,5 * 5,2 * 8,8 * 7,15 * 15$.

15*0=0

$5 * 5=25=19 \mathrm{H}$

$2 * 8=16=10 \mathrm{H}$

15*15=225=E1H

