Name: Id#

COE 202, Term 151 Digital Logic Design

Quiz# 5

Date: Thursday, Dec. 10

Q1. The sequential circuit shown below has a single output Z, an input x together with a Reset input to initialize the circuit. Note that the used D-FFs have direct/asynchronous Clear and Set inputs (shown in the figure as CLR and SET).

- a. Is the circuit type Mealy or Moore? Why?
- b. Derive expressions for the D_0 and D_1 flip flop inputs and the external output Z.
- c. Derive the state transition table of the circuit.

d. What is the circuit initial state?

Q2. Consider the following state transition table for a synchronous sequential circuit that multiplies a binary number by 3 i.e. Z=3*X. The circuit has a single input X, a single output Z, and two state variables Y_0 , and Y_1 . The states are encoded using binary codes 00, 01, 10.

PS (Y ₁ Y ₀) ^t	NS (Y1 Y ₀) ^{t+1}		Z	
	X = 0	X = 1	X = 0	X = 1
0 0	0 0	0 1	0	1
0 1	0 0	1 0	1	0
1 0	0 1	1 0	0	1

Using D-FFs and minimal combinational logic, determine the equations for the D-FF inputs and the output Z for this circuit and draw the resulting circuit. State 00 is the reset state.

Q3. It is required to design a synchronous sequential circuit that receives a serial sequence of 3-bit codes through input X and produces 1 through output Y when the received 3-bit code equals either 010 or 110 (i.e., either 0 followed by 1 followed by 0, or 1 followed by 1 followed by 0). Assume the availability of an asynchronous reset input to reset the machine to a reset state. Draw the state diagram of the circuit assuming a Mealy model with minimum number of states. You are not required to derive the equations and the circuit. The following is an example of an input and output sequence:

Example:

Input	X	010001001101110
Output	Y	00100000000001