COE 202, Term 151

Digital Logic Design

Quiz\# 5

Date: Thursday, Dec. 10

Q1. The sequential circuit shown below has a single output Z, an input x together with a Reset input to initialize the circuit. Note that the used D-FFs have direct/asynchronous Clear and Set inputs (shown in the figure as CLR and SET).

a. Is the circuit type Mealy or Moore? Why?
b. Derive expressions for the D_{0} and D_{1} flip flop inputs and the external output Z .
c. Derive the state transition table of the circuit.
d. What is the circuit initial state?

Q2. Consider the following state transition table for a synchronous sequential circuit that multiplies a binary number by 3 i.e. $\mathbf{Z}=3 * \mathbf{X}$. The circuit has a single input \mathbf{X}, a single output \mathbf{Z}, and two state variables $\mathbf{Y}_{\mathbf{0}}$, and $\mathbf{Y}_{\mathbf{1}}$. The states are encoded using binary codes $\mathbf{0 0}, \mathbf{0 1}, \mathbf{1 0}$.

$\mathbf{P S}\left(\begin{array}{lll}\mathbf{Y}_{\mathbf{1}} & \left.\mathbf{Y}_{\mathbf{0}}\right)^{\text {t }} \text { t }\end{array}\right.$	NS ($\left.\mathbf{Y l}^{1} \mathbf{Y} \mathbf{Y}_{0}\right)^{\mathbf{t + 1}}$		Z	
	$\mathbf{X}=0$	$\mathrm{X}=1$	$\mathbf{X}=0$	$\mathrm{X}=1$
$0 \quad 0$	00		0	1
	00	10	1	0
10	01	10	0	1

Using D-FFs and minimal combinational logic, determine the equations for the D-FF inputs and the output Z for this circuit and draw the resulting circuit. State 00 is the reset state.

Q3. It is required to design a synchronous sequential circuit that receives a serial sequence of 3-bit codes through input \mathbf{X} and produces $\mathbf{1}$ through output \mathbf{Y} when the received 3-bit code equals either 010 or 110 (i.e., either 0 followed by 1 followed by 0 , or 1 followed by 1 followed by 0). Assume the availability of an asynchronous reset input to reset the machine to a reset state. Draw the state diagram of the circuit assuming a Mealy model with minimum number of states. You are not required to derive the equations and the circuit. The following is an example of an input and output sequence:

Example:

Input	\mathbf{X}	010001001101110
Output	\mathbf{Y}	001000000000001

