Name:	Id#
-------	-----

COE 202, Term 141 Digital Logic Design

Quiz# 5

Date: Thursday, Nov. 27

Q1 a. Fill in all blank cells in the two tables below.

	Equivalent decimal value with the binary interpreted as:				
Binary	Unsigned	Signed-magnitude	Signed-1's	Signed-2's	BCD
	number	number	complement number	complement number	number
10000000					

Decimal	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement
			notation
- 75			

b. Using 2's-complement signed arithmetic in 5 bits, do the following operations $\underline{\text{in binary}}$. Show all your work, and:

- Verify that you get the expected decimal results.
- Check for overflow and mark clearly any overflow occurrences.

(ii)

c. Consider the signed 2's complement arithmetic operation A - B in 6 bits. With B = 101100, the largest value allowed for A in order to avoid the occurrence of overflow is $(\underline{\hspace{1cm}})_2$.

Q2 Assume that the delay of a 2-input XOR gate is 3ns while the delay of other gates is equal to the gate's number of inputs, i.e. the delay of an inverter is 1ns, the delay of a 2-input AND gate is 2ns, the delay of a 2-input OR is 2ns, the delay of a 3-input AND gate is 3ns, the delay of a 3-input OR gate is 3ns, etc.

(a) (6 points) A 4-bit Ripple Carry Adder (RCA) is given below:

Determine and compute the **longest delay** in the **4-bit Ripple Carry Adder** (RCA).

