## COE 202, Term 141

Digital Logic Design

## Quiz\# 5

Date: Thursday, Nov. 27
Q1 a. Fill in all blank cells in the two tables below.

| Binary | Equivalent decimal value with the binary interpreted as: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unsigned <br> number | Signed-magnitude <br> number | Signed-1's <br> complement number | Signed-2's <br> complement number | BCD <br> number |
| 10000000 |  |  |  |  |  |


| Decimal | Binary representation in 8 bits: |  |  |
| :---: | :---: | :---: | :---: |
|  | Signed-magnitude notation | Signed-1's complement notation | Signed-2's complement <br> notation |
| -75 |  |  |  |

b. Using 2's-complement signed arithmetic in 5 bits, do the following operations in binary. Show all your work, and:

- Verify that you get the expected decimal results.
- Check for overflow and mark clearly any overflow occurrences.

| 00111 | (i) | 10110 |  |
| :--- | :--- | :--- | :--- |
| $-\underline{10101}$ |  | -10011 | (ii) |

c. Consider the signed 2's complement arithmetic operation A - B in 6 bits. With $B=101100$, the largest value allowed for A in order to avoid the occurrence of overflow is ( $\qquad$ ) 2.

Q2 Assume that the delay of a 2-input XOR gate is 3ns while the delay of other gates is equal to the gate's number of inputs, i.e. the delay of an inverter is 1 ns , the delay of a 2 -input AND gate is 2 ns , the delay of a 2 -input OR is 2 ns , the delay of a 3 -input AND gate is 3 ns , the delay of a 3 input OR gate is 3 ns , etc.
(a) (6 points) A 4-bit Ripple Carry Adder (RCA) is given below:


Determine and compute the longest delay in the 4-bit Ripple Carry Adder (RCA).
(b) (4 points) Show the design of a 2-bit Carry Look-Ahead Adder (CLA) by drawing its logic diagram.
(c) (3 points) Using the delay assumptions given in the beginning of the question, determine and compute the longest delay in the 2-bit Carry Look-Ahead Adder (CLA).

