l#

COE 202, Term 131 Digital Logic Design

Quiz# 5

Date: Thursday, Nov. 28

Q1. Fill in all blank cells in the two tables below. All binary representations use 7 bits

	Equivalent decimal value with the binary interpreted as:			
Binary	Unsigned number	Signed-magnitude	Signed-1's complement	Signed-2's complement
		number	number	number
1011010				

	Binary representation in:			
Decimal	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement	
			notation	
- 59				

b. Using 2's-complement signed arithmetic in **5 bits**, perform the following operations in binary. Show all your work. Verify that you get the expected decimal results.

Check for overflow and mark clearly any occurrences of it.

11010	(i)	00101	(ii)
+ 11001		- 10100	
	(iii)		(iv)
(+5) + (-9)		(-6) - (+8)	

c.	When doing signed 2's complement arithmetic in <u>6 bit</u> s, the <u>smallest</u> binary number that will cause
	overflow when <u>subtracted</u> from $(101000)_2$ is

(a) You are given **one 3-to-8 decoder**, **one NOR** gate and **one OR** gate to implement the two functions given below.

$$F_1(A,B,C) = \prod M(0,1,4,5,6)$$

 $F_2(A,B,C) = \sum m(0,4,6) + \sum d(1,3)$

Draw the circuit and properly <u>label</u> all input and output lines.

(b) Given the truth table below for a function with four inputs (A, B, C and D) and one output F, implement F using a 4-to-1 MUX (with 2 select lines) and additional logic. Show how you obtained your solution, and properly <u>label</u> all input and output lines. Apply A and B to the select inputs.

A	В	C	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0