COE 202, Term 131
 Digital Logic Design

Quiz\# 5

Date: Thursday, Nov. 28

Q1. Fill in all blank cells in the two tables below. All binary representations use 7 bits

Binary	Equivalent decimal value with the binary interpreted as:			
	Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number
1011010				

Decimal	Binary representation in:		
	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement notation
-59			

b. Using 2's-complement signed arithmetic in $\mathbf{5}$ bits, perform the following operations in binary. Show all your work. Verify that you get the expected decimal results.

Check for overflow and mark clearly any occurrences of it.

c. When doing signed 2 's complement arithmetic in $\underline{\mathbf{6} \text { bits, the smallest binary number that will cause }}$ overflow when subtracted from $(101000)_{2}$ is \qquad -

Q2.
(a) You are given one 3-to-8 decoder, one NOR gate and one OR gate to implement the two functions given below.

$$
\begin{aligned}
& \mathbf{F}_{1}(\mathbf{A}, \mathrm{~B}, \mathrm{C})=\Pi \mathbf{M}(\mathbf{0}, \mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{6}) \\
& \mathbf{F}_{2}(\mathbf{A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(\mathbf{0}, \mathbf{4}, \mathbf{6})+\sum \mathrm{d}(\mathbf{1}, \mathbf{3})
\end{aligned}
$$

Draw the circuit and properly label all input and output lines.
(b) Given the truth table below for a function with four inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) and one output F, implement F using a 4-to-1 MUX (with 2 select lines) and additional logic. Show how you obtained your solution, and properly label all input and output lines. Apply A and B to the select inputs.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

