COE 202, Term 052
 Fundamentals of Computer Engineering

Quiz\# 5 (Take Home)

Due date: Monday, April 17, 2006
Q.1. Assume the delay of a gate is equal to the number of its inputs, i.e. the delay of a 2-input gate is 2 , and the delay of a 3 -input gate is 3 . Using Logic works do the following:
a. Model a full-adder.
b. Use the full adder model and construction from it an 8-bit Ripple Carry Adder.
c. Determine the worst case delay in your 8-bit Ripple Carry Adder by simulation.
d. Model a 4-bit Carry Look Ahead adder.
e. Simulate the following values to verify that your adder works properly: $3+4$, $1-7,3+1,2+5,3+3$.
f. Determine the longest delay in the 4-bit Carry Look Ahead adder by simulation.
g. Construct an 8-bit adder by connection two 4-bit Carry Look Ahead adders together.
h. Determine by simulation the longest delay in the 8-bit adder in (g).
Q.2. It is required to design a $B C D$ adder to perform addition in $B C D$ representation.
a. Model a single-digit BCD adder.
b. Using the single digit BCD adder, build a 3-digit BCD adder.
c. Verify the correct functionality of the 3-digit BCD adder by simulating the following operations: $999+1,999+222,100+999,279+465$

Q.3. [1\% Bonus]

a. Model a 4-bit multiplier.
b. Verify the correct functionality of the 4-digit multiplier by simulating the following operations: 15 * 1, 15*0, $5 * 5,2 * 8,8 * 7,15 * 15$.

