Name: Id#

COE 202, Term 162 Fundamentals of Computer Engineering

Quiz# 4 Solution

Date: Sunday, April 16

Q1. In designing a combinational circuit that computes the function $f(X) = X^2 - X$ for a 3-bit 2's complement signed number X, where the output f(X) is an un-signed integer:

(i) How many bits do we need for the output?

[2 points]

X that produces that largest f(x) is -4. In this case f(x) = 16+4 = 20. So, the number of bit needed for the output is 5 bits.

(ii) Obtain the truth table for this circuit.

[4 points]

X ₂ X ₁ X ₀	Decimal value	Decimal	F ₄ F ₃ F ₂ F ₁ F ₀
	of X	value of f(X)	
0 0 0	0	0	00000
0 0 1	+1	0	00000
0 1 0	+2	2	00010
0 1 1	+3	6	0 0 1 1 0
1 0 0	-4	20	1 0 1 0 0
1 0 1	-3	12	0 1 1 0 0
1 1 0	-2	6	0 0 1 1 0
1 1 1	-1	2	00010

(iii) Obtain simplified Boolean expressions of the circuit outputs in SOP form.

[4 points]

 $F_4 F_3 F_1 F_0$ Can be obtained directly from the truth table (no minimization can be done)

 $F_4 = X_2 X_1' X_0'$

 $F_3 = X_2 X_1' X_0$

 $F_1 = X_1$

 $F_0 = 0$

K-map for F₂:

$$F_2 = X_2' X_1 X_0 + X_2 X_1' + X_2 X_0'$$

		X_1'			
		00	01	11	10
$\chi_2{^\prime}$	0	0	0	1	0
	1	1	1	0	1

(i) What is the <u>minimum</u> number of bits needed to represent integers in the range from -100 to +100 using sign-magnitude representation? [2 points]

8-bits

(ii) Show the binary representations of +49 and -49 using <u>10-bits</u> signed-magnitude, 1's complement and 2's complement representations (record your answers in the table below). [4 points]

Decimal	Binary Signed-magnitude representation	Binary Signed-1's complement representation	Binary Signed-2's complement representation
- 49	1_000_110_001	1_111_001_110	1_111_001_111
+ 49	0_000_110_001	0_000_110_001	0_000_110_001

(iii) Perform the following operations on <u>6-bits</u> signed numbers <u>using 2'complement representation</u>. <u>Check for overflow and mark clearly any overflow occurrences</u>. [4 points]

(1) 011100 – 011111		(2) 101111 + 100110	
= 011100 + 100001		= 010101	
= 111101			
Ov	verflow: Yes/ <u>No</u>		Overflow: <u>Yes</u> /No