COE 202, Term 162
 Fundamentals of Computer Engineering

Quiz\# 4 Solution

Date: Sunday, April 16

Q1. In designing a combinational circuit that computes the function $f(X)=X^{2}-X$ for a 3-bit 2's complement signed number X, where the output $f(X)$ is an un-signed integer:
(i) How many bits do we need for the output?
X that produces that largest $f(x)$ is -4 . In this case $f(x)=16+4=20$. So, the number of bit needed for the output is 5 bits.
(ii) Obtain the truth table for this circuit.

$\mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$			Decimal value of X	Decimal value of $f(X)$	$\mathrm{F}_{4} \mathrm{~F}_{3} \mathrm{~F}_{2} \mathrm{~F}_{1} \mathrm{~F} 0$	
0	0	0	0	0	0000	0
0	0	1	+1	0	0000	0
0	1	0	+2	2	0001	0
0	1	1	+3	6	00110	0
1	0	0	-4	20	10100	0
1	0	1	-3	12	0110	0
1	1	0	-2	6	00110	0
1	1	1	-1	2	0001	0

(iii) Obtain simplified Boolean expressions of the circuit outputs in SOP form.
[4 points]
$F_{4} F_{3} F_{1} F_{0} C_{0}$ be obtained directly from the truth table (no minimization can be done)
$F_{4}=X_{2} X_{1}^{\prime} X_{0}^{\prime}$
$F_{3}=X_{2} X_{1}^{\prime} X_{0}$
$F_{1}=X_{1}$
$F_{0}=0$

K-map for F_{2} :

$$
F_{2}=X_{2}^{\prime} X_{1} X_{0}+X_{2} X_{1}^{\prime}+X_{2} X_{0^{\prime}}
$$

XI^{\prime}				
	00	01	11	10
$\mathrm{X}^{\prime}{ }^{\prime} 0$	0	0	1	0
1	1	1	0	1

Q2.
(i) What is the minimum number of bits needed to represent integers in the range from -100 to +100 using sign-magnitude representation?

8-bits

(ii) Show the binary representations of $\mathbf{+ 4 9}$ and $\mathbf{- 4 9}$ using $\mathbf{1 0 - b i t s}$ signed-magnitude, 1 's complement and 2's complement representations (record your answers in the table below). [4 points]

Decimal	Binary Signed-magnitude representation	Binary Signed-1's complement representation	Binary Signed-2's complement representation
-49	1_000_110_001	1_111_001_110	1_111_001_111
+ 49	0_000_110_001	0_000_110_001	0_000_110_001

(iii) Perform the following operations on $\mathbf{6}$-bits signed numbers using 2'complement representation. Check for overflow and mark clearly any overflow occurrences. [4 points]

