COE 202, Term 151

Digital Logic Design

Quiz\# 4

Date: Tuesday, Nov. 3

Q1. It is required to design a Tripler circuit. The circuit receives an n-bit number X and computes the result $\mathrm{Y}=3^{*} \mathrm{X}$.
a. If the input is an n-bit unsigned number, what is the size of the output " y " in bits?
$\mathrm{n}+2$
b. The circuit can be constructed using n identical copies of the basic 1-bit cell shown to the right. The cell processes one input bit ($\mathrm{X} i$) and produces one output bit ($\mathrm{Y} i$) and two output carry bits (CO0 and CO1). To allow for cascading n such cells to implement an n-bit Tripler, the basic cell also accepts two input carry bits (CIO and CI1). When the output carry equals 1 then $\mathrm{CO} \mathrm{CO}=01$, while when it equals 2 then $\mathrm{CO} 1 \mathrm{CO} 0=10$.

The Figure below shows how a 4-bit Tripler circuit is implemented using 4 copies of the basic 1-bit cell.

Derive the truth table for the basic one-bit cell.
(Hint: As the initial input carries $=00$, the maximum carry from one cell to the next is 2)

Truth Table:

x_{i}	$C I_{1}$	$C I_{0}$	$C O 1$	$C O D$	y_{i}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	x	x	x
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	x	x	x

c. Derive a minimized sum-of-product expressions for the outputs of the basic one-bit cell.

$C O_{1}=x_{i C I}+x_{i} C I_{0}$

$\mathrm{CO}_{0}=\bar{x}_{i} C I_{1}+x_{i} \overline{C I}_{1} \overline{C I}_{0}$

$$
y_{i}=\bar{x}_{i}<I_{0}+x_{i} \stackrel{I_{0}}{ }
$$

Q2.
a. Fill in all blank cells in the two tables below. All binary representations use 7 bits

Binary	Equivalent decimal value with the binary interpreted as:			
	Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number
1011010	00	-26	-37	-38

Decimal	Binary representation in:			
	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement notation	
-59	1111011	1000100	1000101	

b. Using 2's-complement signed arithmetic in $\mathbf{5}$ bits, perform the following operations in binary. Show all your work. Verify that you get the expected decimal results.

Check for overflow and mark clearly any occurrences of it.

c. When doing signed 2 's complement arithmetic in 6 bits, the smallest binary number that will cause overflow when subtracted from 101000$)_{2}$ is 001001\rangle_{2}

$$
\begin{aligned}
& =-011000 \\
& =-24
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad-24 & -x=-33 \\
x & =-24+33=+9 \\
& =001001
\end{aligned}
$$

