COE 202, Term 142
Digital Logic Design

Quiz\# 4

Date: Thursday, April 2, 2015

Q1 Convert the AND/OR/NOT logic diagram shown below to a NOR logic diagram.

Q2 A logic circuit has two inputs x \& y each is a 2-bit unsigned number. It has an output number z such that $\mathrm{z}=\mathrm{x} 2+\mathrm{y} 2$.
a. What is the minimum number of bits required for the output number z ?

b. Construct the truth table of the circuit.
c. Derive the Boolean expressions of the two least significant output bits $\left(z_{0}, z_{1}\right)$ using basic logic gates.
a. $\operatorname{Max}(z)=(3)^{2}+(3)^{2}=18 \rightarrow$ Requires 5-Bits \rightarrow Outputs : $Z_{4} Z_{3} Z_{2} Z_{1} Z_{0}$

$$
\begin{aligned}
Z_{0} & =\overline{x_{0}} y_{0}+\overline{y_{0}} x_{0} \\
& =y_{0} \oplus x_{0}
\end{aligned}
$$

x_{1}							$\mathrm{x}_{0} \mathrm{y}_{1}$	y_{0}
0	Z_{4}	Z_{3}	Z_{2}	Z_{1}	Z_{0}			
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0	0
0	0	1	1	0	1	0	0	1
0	1	0	0	0	0	0	0	1
0	1	0	1	0	0	0	1	0
0	1	1	0	0	0	1	0	1
0	1	1	1	0	1	0	1	0
1	0	0	0	0	0	1	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	1	0	0	0
1	0	1	1	0	1	1	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	1	0
1	1	1	0	0	1	1	0	1
1	1	1	1	1	0	0	1	0

	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

$$
Z_{1}=y_{0} x_{0}
$$

