COE 202, Term 132
 Digital Logic Design

Quiz\# 4

Date: Tuesday, April 15

Q1. Determine the decimal value of the 7-bit binary number (1011010) when interpreted as:

An unsigned number	A signed-magnitude number	A signed-1's complement number	A signed-2's complement number
90	-26	-37	-38

ii. Represent the decimal value (-21) in binary using a total of 7 bits in the following notations:

A signed-magnitude number	A signed-1's complement number	A signed-2's complement number
1010101	1101010	1101011

iii. Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values from the last two stages. For each of the three operations, check and indicate whether overflow occurred or not.

01010	$\left\{\begin{array}{r} +13 \\ \begin{array}{r} 1+1+ \\ 01101 \\ +10110 \end{array}+-10 \\ 00011+32 \end{array}\right.$	$\begin{aligned} & \text { b. } \begin{array}{c} 01010 \\ -11001 \\ \hline 0011 \frac{+(-7)}{+17} \\ \hline 0<1010 \\ +00111 \\ \hline 10001 \end{array},>45 \end{aligned}$	$\text { c. } \begin{array}{rr} 11010 & 00110 \\ -00100 & -+4 \\ \hline 1 \leftarrow & -10 \\ +11010 & \\ \hline 10110 \\ = & -01010 \\ = & -101 \end{array}$
Overflow Occurred? (Yes/No)	No	Yes	$N \bigcirc$

(B) Consider the 2's complement 4-bit adder/subtractor hardware shown (FA $=$ full adder).

i. Fill in the spaces in the table below.

Inputs			Outputs			
\mathbf{A}	\mathbf{B}	Control	\mathbf{S} (binary)	C_{4}	C_{3}	Overflow
0111	0101	0	1100	0	1	1
1010	1101	1	1101	0	0	0
1	10	1	1			
1	100					

ii. What type of 4-bit adder is used in this design? (Circle the correct answer):

-Carry-ripple adder

- Carry-look-ahead adder
b. Consider a 2-bit version of the hardware above which is shown below. Shown also is full adder used. Given that each basic gate (i.e. AND, OR, NOT) has a delay of $\tau \mathrm{ns}$ and the XOR gate has a delay of 3τ :

The Full Adder (FA)

i. Express, as a function of τ, the longest time interval needed for the hardware to perform an operation on the two 2-bit numbers.

$$
(3+3+2+3) \geq=115
$$

ii. If such an operation must be performed in no longer than 33 ns , calculate the maximum basic gate delay allowed.

$$
33 \mathrm{~ns} / 11=3 \mathrm{~ns}
$$

