COE 202, Term 131
 Digital Logic Design

Quiz\# 4

Date: Tuesday, Nov. 25

Q1. Design a circuit that accepts two 2-bit unsigned numbers $A=A_{1} A_{0}$ and $B=B_{1} B_{0}$. The circuit produces $\mathrm{A}-\mathrm{B}$ when $\mathrm{A}>\mathrm{B}$, and produces $\mathrm{A}+\mathrm{B}$ otherwise. Find the following:
(a) The number of outputs produced by the circuit.

$$
A-B \text { result is at most } 2 \text { bits, } A+B \text { result is at most } 3 \text { bits } \Rightarrow \# \text { outputs }=\mathbf{3}
$$

(b) The truth table of the circuit.

A_{1}	A_{0}	B_{1}	B_{0}	O_{2}	O_{1}	O_{0}
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	0	1	0
1	1	1	0	0	0	1
1	1	1	1	1	1	0

(c) The minimal product-of-sums expression for each output.

$$
O_{1}=\left(A_{1}+A_{0}+B_{1}\right)\left(A_{1}+B_{1}+B_{0}\right)\left(\overline{A_{1}}+A_{0}+\overline{B_{0}}\right)\left(\overline{A_{1}}+\overline{B_{1}}+B_{0}\right)\left(A_{1}+\overline{A_{0}}+\overline{B_{1}}+\overline{B_{0}}\right)
$$

$$
O_{0}=\left(A_{0}+B_{0}\right)\left(\overline{A_{0}}+\overline{B_{0}}\right)
$$

Q2. Convert the AND/OR/NOT logic diagram shown below to a NAND logic diagram:

