Name: KEY Id#

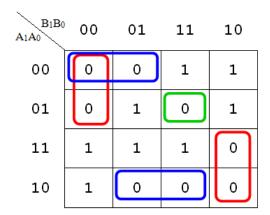
COE 202, Term 131 Digital Logic Design

Quiz# 4

Date: Tuesday, Nov. 25

- **Q1**. Design a circuit that accepts two 2-bit unsigned numbers $A = A_1A_0$ and $B = B_1B_0$. The circuit produces A B when A > B, and produces A + B otherwise. Find the following:
 - (a) The number of outputs produced by the circuit.

A - B result is at most 2 bits, A + B result is at most 3 bits \Rightarrow # outputs = 3

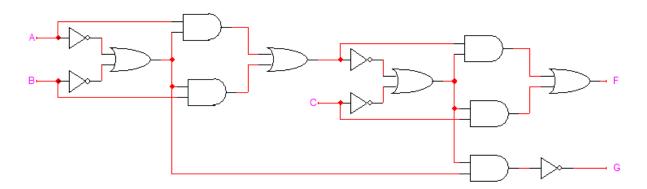

(b) The truth table of the circuit.

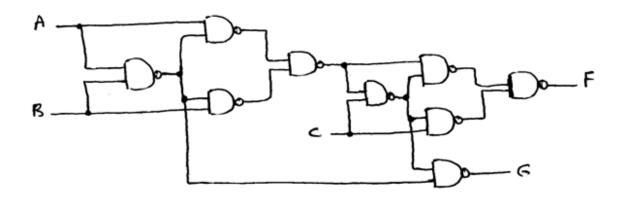
A_1	A_0	B_1	B_0	O_2	O_1	O_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	0	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	0	1	0
1	1	1	0	0	0	1
1	1	1	1	1	1	0

(c) The minimal <u>product-of-sums</u> expression for each output.

A_1A_0	00		01	11		10	
00	0		0	0	0		
01	0		0	1		0	
11	0		0	1		0	
10	0		0	1	1		

$$O_2 = (A_1 + A_0)(\overline{A_0} + B_0)B_1$$




$$O_{1} = (A_{1} + A_{0} + B_{1})(A_{1} + B_{1} + B_{0})(\overline{A_{1}} + A_{0} + \overline{B_{0}})(\overline{A_{1}} + \overline{B_{1}} + B_{0})(A_{1} + \overline{A_{0}} + \overline{B_{1}} + \overline{B_{0}})$$

B ₁ B ₀	00		01	11	10	
00	0		1	1	0	
01	1		0	0	1	
11	1		0	0	1	
10	0		1	1	0	
						•

$$O_0 = (A_0 + B_0)(\overline{A_0} + \overline{B_0})$$

Q2. Convert the AND/OR/NOT logic diagram shown below to a NAND logic diagram:

